The Local Character Expansion near a Tame, Semisimple Element
Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2007-04, Vol.129 (2), p.381-403 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 403 |
---|---|
container_issue | 2 |
container_start_page | 381 |
container_title | American journal of mathematics |
container_volume | 129 |
creator | Adler, Jeffrey D. Korman, Jonathan |
description | Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe an explicit region on which the local character expansion is valid. We assume neither that the group is connected, nor that the underlying field has characteristic zero. |
doi_str_mv | 10.1353/ajm.2007.0005 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236559063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40068066</jstor_id><sourcerecordid>40068066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-5193391c311a44c699993ab239b22d595dc9193babf0941fe3180f100f9830e73</originalsourceid><addsrcrecordid>eNpNkEtLAzEURoMoWKtLl0IQ3Dn1JncmmSxcSKkPKLhoXYdMmqEzzKMmU9B_b4ZKNZuQcL77cQ8h1wxmDDN8MHU74wByBgDZCZkwyCERKOUpmcQvnijk8pxchFDHJ0jgE_K43jq67K1p6HxrvLGD83TxtTNdqPqOds54aujatO6erlxbhardNY4uGte6brgkZ6Vpgrv6vafk43mxnr8my_eXt_nTMrGpEEOSMYWomEXGTJpaoeJBU3BUBeebTGUbqyJSmKIElbLSIcuhZAClyhGcxCm5Pczd-f5z78Kg637vu1ipOYosUyAwQskBsr4PwbtS73zVGv-tGehRkI6C9ChIj4Iif_c71IS4f-lNZ6vwF8qFRMhV5NJjee3s0O6D-9fPuGRCr0bZo2uQHDBneYzdHGJ1GHp_HJsCiEgK_AGVjXxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236559063</pqid></control><display><type>article</type><title>The Local Character Expansion near a Tame, Semisimple Element</title><source>Project Muse Premium Collection</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Adler, Jeffrey D. ; Korman, Jonathan</creator><creatorcontrib>Adler, Jeffrey D. ; Korman, Jonathan</creatorcontrib><description>Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe an explicit region on which the local character expansion is valid. We assume neither that the group is connected, nor that the underlying field has characteristic zero.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2007.0005</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Algebra ; Eigenvalues ; Exact sciences and technology ; Fourier transformations ; Fourier transforms ; Group theory ; Group theory and generalizations ; Haar measures ; Harmonic analysis ; Mathematical analysis ; Mathematical functions ; Mathematical sets ; Mathematical theorems ; Mathematics ; Moral character ; Sciences and techniques of general use ; Topological groups, lie groups</subject><ispartof>American journal of mathematics, 2007-04, Vol.129 (2), p.381-403</ispartof><rights>Copyright 2007 The Johns Hopkins University Press</rights><rights>Copyright © 2007 The Johns Hopkins University Press.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Apr 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-5193391c311a44c699993ab239b22d595dc9193babf0941fe3180f100f9830e73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40068066$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40068066$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21127,27924,27925,56842,57402,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18673089$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Adler, Jeffrey D.</creatorcontrib><creatorcontrib>Korman, Jonathan</creatorcontrib><title>The Local Character Expansion near a Tame, Semisimple Element</title><title>American journal of mathematics</title><description>Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe an explicit region on which the local character expansion is valid. We assume neither that the group is connected, nor that the underlying field has characteristic zero.</description><subject>Algebra</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Fourier transformations</subject><subject>Fourier transforms</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Haar measures</subject><subject>Harmonic analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical sets</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Moral character</subject><subject>Sciences and techniques of general use</subject><subject>Topological groups, lie groups</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkEtLAzEURoMoWKtLl0IQ3Dn1JncmmSxcSKkPKLhoXYdMmqEzzKMmU9B_b4ZKNZuQcL77cQ8h1wxmDDN8MHU74wByBgDZCZkwyCERKOUpmcQvnijk8pxchFDHJ0jgE_K43jq67K1p6HxrvLGD83TxtTNdqPqOds54aujatO6erlxbhardNY4uGte6brgkZ6Vpgrv6vafk43mxnr8my_eXt_nTMrGpEEOSMYWomEXGTJpaoeJBU3BUBeebTGUbqyJSmKIElbLSIcuhZAClyhGcxCm5Pczd-f5z78Kg637vu1ipOYosUyAwQskBsr4PwbtS73zVGv-tGehRkI6C9ChIj4Iif_c71IS4f-lNZ6vwF8qFRMhV5NJjee3s0O6D-9fPuGRCr0bZo2uQHDBneYzdHGJ1GHp_HJsCiEgK_AGVjXxQ</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Adler, Jeffrey D.</creator><creator>Korman, Jonathan</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20070401</creationdate><title>The Local Character Expansion near a Tame, Semisimple Element</title><author>Adler, Jeffrey D. ; Korman, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-5193391c311a44c699993ab239b22d595dc9193babf0941fe3180f100f9830e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Fourier transformations</topic><topic>Fourier transforms</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Haar measures</topic><topic>Harmonic analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical sets</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Moral character</topic><topic>Sciences and techniques of general use</topic><topic>Topological groups, lie groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adler, Jeffrey D.</creatorcontrib><creatorcontrib>Korman, Jonathan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adler, Jeffrey D.</au><au>Korman, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Local Character Expansion near a Tame, Semisimple Element</atitle><jtitle>American journal of mathematics</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>129</volume><issue>2</issue><spage>381</spage><epage>403</epage><pages>381-403</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe an explicit region on which the local character expansion is valid. We assume neither that the group is connected, nor that the underlying field has characteristic zero.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2007.0005</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2007-04, Vol.129 (2), p.381-403 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_236559063 |
source | Project Muse Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Eigenvalues Exact sciences and technology Fourier transformations Fourier transforms Group theory Group theory and generalizations Haar measures Harmonic analysis Mathematical analysis Mathematical functions Mathematical sets Mathematical theorems Mathematics Moral character Sciences and techniques of general use Topological groups, lie groups |
title | The Local Character Expansion near a Tame, Semisimple Element |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Local%20Character%20Expansion%20near%20a%20Tame,%20Semisimple%20Element&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Adler,%20Jeffrey%20D.&rft.date=2007-04-01&rft.volume=129&rft.issue=2&rft.spage=381&rft.epage=403&rft.pages=381-403&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.2007.0005&rft_dat=%3Cjstor_proqu%3E40068066%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236559063&rft_id=info:pmid/&rft_jstor_id=40068066&rfr_iscdi=true |