The Local Character Expansion near a Tame, Semisimple Element

Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2007-04, Vol.129 (2), p.381-403
Hauptverfasser: Adler, Jeffrey D., Korman, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403
container_issue 2
container_start_page 381
container_title American journal of mathematics
container_volume 129
creator Adler, Jeffrey D.
Korman, Jonathan
description Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe an explicit region on which the local character expansion is valid. We assume neither that the group is connected, nor that the underlying field has characteristic zero.
doi_str_mv 10.1353/ajm.2007.0005
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236559063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40068066</jstor_id><sourcerecordid>40068066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-5193391c311a44c699993ab239b22d595dc9193babf0941fe3180f100f9830e73</originalsourceid><addsrcrecordid>eNpNkEtLAzEURoMoWKtLl0IQ3Dn1JncmmSxcSKkPKLhoXYdMmqEzzKMmU9B_b4ZKNZuQcL77cQ8h1wxmDDN8MHU74wByBgDZCZkwyCERKOUpmcQvnijk8pxchFDHJ0jgE_K43jq67K1p6HxrvLGD83TxtTNdqPqOds54aujatO6erlxbhardNY4uGte6brgkZ6Vpgrv6vafk43mxnr8my_eXt_nTMrGpEEOSMYWomEXGTJpaoeJBU3BUBeebTGUbqyJSmKIElbLSIcuhZAClyhGcxCm5Pczd-f5z78Kg637vu1ipOYosUyAwQskBsr4PwbtS73zVGv-tGehRkI6C9ChIj4Iif_c71IS4f-lNZ6vwF8qFRMhV5NJjee3s0O6D-9fPuGRCr0bZo2uQHDBneYzdHGJ1GHp_HJsCiEgK_AGVjXxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236559063</pqid></control><display><type>article</type><title>The Local Character Expansion near a Tame, Semisimple Element</title><source>Project Muse Premium Collection</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Adler, Jeffrey D. ; Korman, Jonathan</creator><creatorcontrib>Adler, Jeffrey D. ; Korman, Jonathan</creatorcontrib><description>Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe an explicit region on which the local character expansion is valid. We assume neither that the group is connected, nor that the underlying field has characteristic zero.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2007.0005</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Algebra ; Eigenvalues ; Exact sciences and technology ; Fourier transformations ; Fourier transforms ; Group theory ; Group theory and generalizations ; Haar measures ; Harmonic analysis ; Mathematical analysis ; Mathematical functions ; Mathematical sets ; Mathematical theorems ; Mathematics ; Moral character ; Sciences and techniques of general use ; Topological groups, lie groups</subject><ispartof>American journal of mathematics, 2007-04, Vol.129 (2), p.381-403</ispartof><rights>Copyright 2007 The Johns Hopkins University Press</rights><rights>Copyright © 2007 The Johns Hopkins University Press.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Apr 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-5193391c311a44c699993ab239b22d595dc9193babf0941fe3180f100f9830e73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40068066$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40068066$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21127,27924,27925,56842,57402,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18673089$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Adler, Jeffrey D.</creatorcontrib><creatorcontrib>Korman, Jonathan</creatorcontrib><title>The Local Character Expansion near a Tame, Semisimple Element</title><title>American journal of mathematics</title><description>Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe an explicit region on which the local character expansion is valid. We assume neither that the group is connected, nor that the underlying field has characteristic zero.</description><subject>Algebra</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Fourier transformations</subject><subject>Fourier transforms</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Haar measures</subject><subject>Harmonic analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical sets</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Moral character</subject><subject>Sciences and techniques of general use</subject><subject>Topological groups, lie groups</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkEtLAzEURoMoWKtLl0IQ3Dn1JncmmSxcSKkPKLhoXYdMmqEzzKMmU9B_b4ZKNZuQcL77cQ8h1wxmDDN8MHU74wByBgDZCZkwyCERKOUpmcQvnijk8pxchFDHJ0jgE_K43jq67K1p6HxrvLGD83TxtTNdqPqOds54aujatO6erlxbhardNY4uGte6brgkZ6Vpgrv6vafk43mxnr8my_eXt_nTMrGpEEOSMYWomEXGTJpaoeJBU3BUBeebTGUbqyJSmKIElbLSIcuhZAClyhGcxCm5Pczd-f5z78Kg637vu1ipOYosUyAwQskBsr4PwbtS73zVGv-tGehRkI6C9ChIj4Iif_c71IS4f-lNZ6vwF8qFRMhV5NJjee3s0O6D-9fPuGRCr0bZo2uQHDBneYzdHGJ1GHp_HJsCiEgK_AGVjXxQ</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Adler, Jeffrey D.</creator><creator>Korman, Jonathan</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20070401</creationdate><title>The Local Character Expansion near a Tame, Semisimple Element</title><author>Adler, Jeffrey D. ; Korman, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-5193391c311a44c699993ab239b22d595dc9193babf0941fe3180f100f9830e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Fourier transformations</topic><topic>Fourier transforms</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Haar measures</topic><topic>Harmonic analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical sets</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Moral character</topic><topic>Sciences and techniques of general use</topic><topic>Topological groups, lie groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adler, Jeffrey D.</creatorcontrib><creatorcontrib>Korman, Jonathan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adler, Jeffrey D.</au><au>Korman, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Local Character Expansion near a Tame, Semisimple Element</atitle><jtitle>American journal of mathematics</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>129</volume><issue>2</issue><spage>381</spage><epage>403</epage><pages>381-403</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>Consider the character of an irreducible admissible representation of a p-adic reductive group. The Harish-Chandra-Howe local expansion expresses this character near a semisimple element as a linear combination of Fourier transforms of nilpotent orbital integrals. Under mild hypotheses, we describe an explicit region on which the local character expansion is valid. We assume neither that the group is connected, nor that the underlying field has characteristic zero.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2007.0005</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2007-04, Vol.129 (2), p.381-403
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_236559063
source Project Muse Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algebra
Eigenvalues
Exact sciences and technology
Fourier transformations
Fourier transforms
Group theory
Group theory and generalizations
Haar measures
Harmonic analysis
Mathematical analysis
Mathematical functions
Mathematical sets
Mathematical theorems
Mathematics
Moral character
Sciences and techniques of general use
Topological groups, lie groups
title The Local Character Expansion near a Tame, Semisimple Element
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Local%20Character%20Expansion%20near%20a%20Tame,%20Semisimple%20Element&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Adler,%20Jeffrey%20D.&rft.date=2007-04-01&rft.volume=129&rft.issue=2&rft.spage=381&rft.epage=403&rft.pages=381-403&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.2007.0005&rft_dat=%3Cjstor_proqu%3E40068066%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236559063&rft_id=info:pmid/&rft_jstor_id=40068066&rfr_iscdi=true