The Dimension of the Leafwise Reduced Cohomology
Geometric conditions are given so that the leafwise reduced cohomology is of infinite dimension, especially for foliations with dense leaves on closed manifolds. The main new definition involved is the intersection number of subfoliations with "appropriate coefficients." The leafwise reduc...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2001-08, Vol.123 (4), p.607-646 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 646 |
---|---|
container_issue | 4 |
container_start_page | 607 |
container_title | American journal of mathematics |
container_volume | 123 |
creator | López, Jesús A. Álvarez Hector, Gilbert |
description | Geometric conditions are given so that the leafwise reduced cohomology is of infinite dimension, especially for foliations with dense leaves on closed manifolds. The main new definition involved is the intersection number of subfoliations with "appropriate coefficients." The leafwise reduced cohomology is also described for homogeneous foliations with dense leaves on closed nilmanifolds. |
doi_str_mv | 10.1353/ajm.2001.0023 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236553313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25099076</jstor_id><sourcerecordid>25099076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-8f83798536c690a6f9167bddeca8c90a9158818c900c6e533e7750ed72d85d343</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRsH4cPQrBe-rsTvfrKPUTCoLW8xI3E5vQdGs2Qfrfu6FSTzPzeO8N_Bi74jDlKPG2aNqpAOBTAIFHbMLBQK5Q62M2gaTlFoU-ZWcxNukEDWLCYLmi7L5uaRPrsMlClfVJWFBR_dSRsjcqB09lNg-r0IZ1-NpdsJOqWEe6_Jvn7OPxYTl_zhevTy_zu0XuUag-N5VBbY1E5ZWFQlWWK_1ZluQL45NguTSGjyt4RRKRtJZApRalkSXO8Jzd7Hu3XfgeKPauCUO3SS-dQCVTgmMy5XuT70KMHVVu29Vt0e0cBzcycYmJG5m4kUny80NpQ75vh0j_vXaG7n2ENjIDPgMFmqfM9T7TxD50hwdCgrWgFf4Cw4trGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236553313</pqid></control><display><type>article</type><title>The Dimension of the Leafwise Reduced Cohomology</title><source>Project MUSE - Premium Collection</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>López, Jesús A. Álvarez ; Hector, Gilbert</creator><creatorcontrib>López, Jesús A. Álvarez ; Hector, Gilbert</creatorcontrib><description>Geometric conditions are given so that the leafwise reduced cohomology is of infinite dimension, especially for foliations with dense leaves on closed manifolds. The main new definition involved is the intersection number of subfoliations with "appropriate coefficients." The leafwise reduced cohomology is also described for homogeneous foliations with dense leaves on closed nilmanifolds.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2001.0023</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Algebra ; Geometry ; Homomorphisms ; Leaves ; Lie groups ; Mathematical manifolds ; Mathematical vectors ; Mathematics ; Riemann manifold ; Topological vector spaces ; Topology</subject><ispartof>American journal of mathematics, 2001-08, Vol.123 (4), p.607-646</ispartof><rights>Copyright 2001 The Johns Hopkins University Press</rights><rights>Copyright © 2001 The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-8f83798536c690a6f9167bddeca8c90a9158818c900c6e533e7750ed72d85d343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25099076$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25099076$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,21107,27903,27904,56821,57381,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>López, Jesús A. Álvarez</creatorcontrib><creatorcontrib>Hector, Gilbert</creatorcontrib><title>The Dimension of the Leafwise Reduced Cohomology</title><title>American journal of mathematics</title><description>Geometric conditions are given so that the leafwise reduced cohomology is of infinite dimension, especially for foliations with dense leaves on closed manifolds. The main new definition involved is the intersection number of subfoliations with "appropriate coefficients." The leafwise reduced cohomology is also described for homogeneous foliations with dense leaves on closed nilmanifolds.</description><subject>Algebra</subject><subject>Geometry</subject><subject>Homomorphisms</subject><subject>Leaves</subject><subject>Lie groups</subject><subject>Mathematical manifolds</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Riemann manifold</subject><subject>Topological vector spaces</subject><subject>Topology</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Lw0AQxRdRsH4cPQrBe-rsTvfrKPUTCoLW8xI3E5vQdGs2Qfrfu6FSTzPzeO8N_Bi74jDlKPG2aNqpAOBTAIFHbMLBQK5Q62M2gaTlFoU-ZWcxNukEDWLCYLmi7L5uaRPrsMlClfVJWFBR_dSRsjcqB09lNg-r0IZ1-NpdsJOqWEe6_Jvn7OPxYTl_zhevTy_zu0XuUag-N5VBbY1E5ZWFQlWWK_1ZluQL45NguTSGjyt4RRKRtJZApRalkSXO8Jzd7Hu3XfgeKPauCUO3SS-dQCVTgmMy5XuT70KMHVVu29Vt0e0cBzcycYmJG5m4kUny80NpQ75vh0j_vXaG7n2ENjIDPgMFmqfM9T7TxD50hwdCgrWgFf4Cw4trGQ</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>López, Jesús A. Álvarez</creator><creator>Hector, Gilbert</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20010801</creationdate><title>The Dimension of the Leafwise Reduced Cohomology</title><author>López, Jesús A. Álvarez ; Hector, Gilbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-8f83798536c690a6f9167bddeca8c90a9158818c900c6e533e7750ed72d85d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algebra</topic><topic>Geometry</topic><topic>Homomorphisms</topic><topic>Leaves</topic><topic>Lie groups</topic><topic>Mathematical manifolds</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Riemann manifold</topic><topic>Topological vector spaces</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López, Jesús A. Álvarez</creatorcontrib><creatorcontrib>Hector, Gilbert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López, Jesús A. Álvarez</au><au>Hector, Gilbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dimension of the Leafwise Reduced Cohomology</atitle><jtitle>American journal of mathematics</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>123</volume><issue>4</issue><spage>607</spage><epage>646</epage><pages>607-646</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>Geometric conditions are given so that the leafwise reduced cohomology is of infinite dimension, especially for foliations with dense leaves on closed manifolds. The main new definition involved is the intersection number of subfoliations with "appropriate coefficients." The leafwise reduced cohomology is also described for homogeneous foliations with dense leaves on closed nilmanifolds.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2001.0023</doi><tpages>40</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2001-08, Vol.123 (4), p.607-646 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_236553313 |
source | Project MUSE - Premium Collection; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Algebra Geometry Homomorphisms Leaves Lie groups Mathematical manifolds Mathematical vectors Mathematics Riemann manifold Topological vector spaces Topology |
title | The Dimension of the Leafwise Reduced Cohomology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dimension%20of%20the%20Leafwise%20Reduced%20Cohomology&rft.jtitle=American%20journal%20of%20mathematics&rft.au=L%C3%B3pez,%20Jes%C3%BAs%20A.%20%C3%81lvarez&rft.date=2001-08-01&rft.volume=123&rft.issue=4&rft.spage=607&rft.epage=646&rft.pages=607-646&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2001.0023&rft_dat=%3Cjstor_proqu%3E25099076%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236553313&rft_id=info:pmid/&rft_jstor_id=25099076&rfr_iscdi=true |