The Dimension of the Leafwise Reduced Cohomology

Geometric conditions are given so that the leafwise reduced cohomology is of infinite dimension, especially for foliations with dense leaves on closed manifolds. The main new definition involved is the intersection number of subfoliations with "appropriate coefficients." The leafwise reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2001-08, Vol.123 (4), p.607-646
Hauptverfasser: López, Jesús A. Álvarez, Hector, Gilbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 646
container_issue 4
container_start_page 607
container_title American journal of mathematics
container_volume 123
creator López, Jesús A. Álvarez
Hector, Gilbert
description Geometric conditions are given so that the leafwise reduced cohomology is of infinite dimension, especially for foliations with dense leaves on closed manifolds. The main new definition involved is the intersection number of subfoliations with "appropriate coefficients." The leafwise reduced cohomology is also described for homogeneous foliations with dense leaves on closed nilmanifolds.
doi_str_mv 10.1353/ajm.2001.0023
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236553313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25099076</jstor_id><sourcerecordid>25099076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-8f83798536c690a6f9167bddeca8c90a9158818c900c6e533e7750ed72d85d343</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRsH4cPQrBe-rsTvfrKPUTCoLW8xI3E5vQdGs2Qfrfu6FSTzPzeO8N_Bi74jDlKPG2aNqpAOBTAIFHbMLBQK5Q62M2gaTlFoU-ZWcxNukEDWLCYLmi7L5uaRPrsMlClfVJWFBR_dSRsjcqB09lNg-r0IZ1-NpdsJOqWEe6_Jvn7OPxYTl_zhevTy_zu0XuUag-N5VBbY1E5ZWFQlWWK_1ZluQL45NguTSGjyt4RRKRtJZApRalkSXO8Jzd7Hu3XfgeKPauCUO3SS-dQCVTgmMy5XuT70KMHVVu29Vt0e0cBzcycYmJG5m4kUny80NpQ75vh0j_vXaG7n2ENjIDPgMFmqfM9T7TxD50hwdCgrWgFf4Cw4trGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236553313</pqid></control><display><type>article</type><title>The Dimension of the Leafwise Reduced Cohomology</title><source>Project MUSE - Premium Collection</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>López, Jesús A. Álvarez ; Hector, Gilbert</creator><creatorcontrib>López, Jesús A. Álvarez ; Hector, Gilbert</creatorcontrib><description>Geometric conditions are given so that the leafwise reduced cohomology is of infinite dimension, especially for foliations with dense leaves on closed manifolds. The main new definition involved is the intersection number of subfoliations with "appropriate coefficients." The leafwise reduced cohomology is also described for homogeneous foliations with dense leaves on closed nilmanifolds.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2001.0023</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Algebra ; Geometry ; Homomorphisms ; Leaves ; Lie groups ; Mathematical manifolds ; Mathematical vectors ; Mathematics ; Riemann manifold ; Topological vector spaces ; Topology</subject><ispartof>American journal of mathematics, 2001-08, Vol.123 (4), p.607-646</ispartof><rights>Copyright 2001 The Johns Hopkins University Press</rights><rights>Copyright © 2001 The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Aug 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-8f83798536c690a6f9167bddeca8c90a9158818c900c6e533e7750ed72d85d343</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25099076$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25099076$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,21107,27903,27904,56821,57381,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>López, Jesús A. Álvarez</creatorcontrib><creatorcontrib>Hector, Gilbert</creatorcontrib><title>The Dimension of the Leafwise Reduced Cohomology</title><title>American journal of mathematics</title><description>Geometric conditions are given so that the leafwise reduced cohomology is of infinite dimension, especially for foliations with dense leaves on closed manifolds. The main new definition involved is the intersection number of subfoliations with "appropriate coefficients." The leafwise reduced cohomology is also described for homogeneous foliations with dense leaves on closed nilmanifolds.</description><subject>Algebra</subject><subject>Geometry</subject><subject>Homomorphisms</subject><subject>Leaves</subject><subject>Lie groups</subject><subject>Mathematical manifolds</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Riemann manifold</subject><subject>Topological vector spaces</subject><subject>Topology</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkM1Lw0AQxRdRsH4cPQrBe-rsTvfrKPUTCoLW8xI3E5vQdGs2Qfrfu6FSTzPzeO8N_Bi74jDlKPG2aNqpAOBTAIFHbMLBQK5Q62M2gaTlFoU-ZWcxNukEDWLCYLmi7L5uaRPrsMlClfVJWFBR_dSRsjcqB09lNg-r0IZ1-NpdsJOqWEe6_Jvn7OPxYTl_zhevTy_zu0XuUag-N5VBbY1E5ZWFQlWWK_1ZluQL45NguTSGjyt4RRKRtJZApRalkSXO8Jzd7Hu3XfgeKPauCUO3SS-dQCVTgmMy5XuT70KMHVVu29Vt0e0cBzcycYmJG5m4kUny80NpQ75vh0j_vXaG7n2ENjIDPgMFmqfM9T7TxD50hwdCgrWgFf4Cw4trGQ</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>López, Jesús A. Álvarez</creator><creator>Hector, Gilbert</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20010801</creationdate><title>The Dimension of the Leafwise Reduced Cohomology</title><author>López, Jesús A. Álvarez ; Hector, Gilbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-8f83798536c690a6f9167bddeca8c90a9158818c900c6e533e7750ed72d85d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algebra</topic><topic>Geometry</topic><topic>Homomorphisms</topic><topic>Leaves</topic><topic>Lie groups</topic><topic>Mathematical manifolds</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Riemann manifold</topic><topic>Topological vector spaces</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López, Jesús A. Álvarez</creatorcontrib><creatorcontrib>Hector, Gilbert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López, Jesús A. Álvarez</au><au>Hector, Gilbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dimension of the Leafwise Reduced Cohomology</atitle><jtitle>American journal of mathematics</jtitle><date>2001-08-01</date><risdate>2001</risdate><volume>123</volume><issue>4</issue><spage>607</spage><epage>646</epage><pages>607-646</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>Geometric conditions are given so that the leafwise reduced cohomology is of infinite dimension, especially for foliations with dense leaves on closed manifolds. The main new definition involved is the intersection number of subfoliations with "appropriate coefficients." The leafwise reduced cohomology is also described for homogeneous foliations with dense leaves on closed nilmanifolds.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2001.0023</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2001-08, Vol.123 (4), p.607-646
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_236553313
source Project MUSE - Premium Collection; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Algebra
Geometry
Homomorphisms
Leaves
Lie groups
Mathematical manifolds
Mathematical vectors
Mathematics
Riemann manifold
Topological vector spaces
Topology
title The Dimension of the Leafwise Reduced Cohomology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dimension%20of%20the%20Leafwise%20Reduced%20Cohomology&rft.jtitle=American%20journal%20of%20mathematics&rft.au=L%C3%B3pez,%20Jes%C3%BAs%20A.%20%C3%81lvarez&rft.date=2001-08-01&rft.volume=123&rft.issue=4&rft.spage=607&rft.epage=646&rft.pages=607-646&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2001.0023&rft_dat=%3Cjstor_proqu%3E25099076%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236553313&rft_id=info:pmid/&rft_jstor_id=25099076&rfr_iscdi=true