The Lower Central Series and Pseudo-Anosov Dilatations
The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface${\rm{S}}_{\rm{g}}$of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$tends to zero at the...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2008-06, Vol.130 (3), p.799-827 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 827 |
---|---|
container_issue | 3 |
container_start_page | 799 |
container_title | American journal of mathematics |
container_volume | 130 |
creator | Farb, Benson Leininger, Christopher J. Margalit, Dan |
description | The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface${\rm{S}}_{\rm{g}}$of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$tends to zero at the rate 1/g. We consider here the smallest dilatation of any pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$acting trivially on$\Gamma /\Gamma _k $, the quotient of$\Gamma \, = \,\pi _1 (S_g )$by the${\rm{K}}^{{\rm{th}}}$term of its lower central series, k > 1. In contrast to Penner's asymptotics, we prove that this minimal dilatation is bounded above and below, independently of g, with bounds tending to infinity with k. For example, in the case of the Torelli group${\rm{I(S}}_g )$, we prove that${\rm{L(I(S}}_g ))$, the logarithm of the minimal dilatation in${\rm{I(S}}_g )$, satisfies .197 |
doi_str_mv | 10.1353/ajm.0.0005 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236541728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40068147</jstor_id><sourcerecordid>40068147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-8730e34999f04732ee8ef73ab8dd97ae265c80debe90ac72dcdb0e637ab38a553</originalsourceid><addsrcrecordid>eNpNkFtLwzAUx4MoOKcvvgtF8EXoPLm0SR9lXmGgsPkc0vQUW7ZmJq3itzdlY_h0yMn_cvgRcklhRnnG70y7mcEMALIjMqGgIM25lMdkElcsLTiTp-QshDY-QQKbkHz1icnC_aBP5tj13qyTJfoGQ2K6KnkPOFQuve9ccN_JQ7M2vekb14VzclKbdcCL_ZySj6fH1fwlXbw9v87vF6kVjPapkhyQi6IoahCSM0SFteSmVFVVSIMsz6yCCksswFjJKluVgPFkU3JlsoxPyfUud-vd14Ch160bfBcrNeN5JqhkKopudyLrXQgea731zcb4X01Bj1h0xKJBj1ii-GafaII169qbzjbh4GAgaA6SR504NLdo-80Q8H95QTOhlyPikTAoHtPzItqudrY29M4fYkX8VDQi-ANu9nqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236541728</pqid></control><display><type>article</type><title>The Lower Central Series and Pseudo-Anosov Dilatations</title><source>Project Muse Premium Collection</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Farb, Benson ; Leininger, Christopher J. ; Margalit, Dan</creator><creatorcontrib>Farb, Benson ; Leininger, Christopher J. ; Margalit, Dan</creatorcontrib><description>The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface${\rm{S}}_{\rm{g}}$of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$tends to zero at the rate 1/g. We consider here the smallest dilatation of any pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$acting trivially on$\Gamma /\Gamma _k $, the quotient of$\Gamma \, = \,\pi _1 (S_g )$by the${\rm{K}}^{{\rm{th}}}$term of its lower central series, k > 1. In contrast to Penner's asymptotics, we prove that this minimal dilatation is bounded above and below, independently of g, with bounds tending to infinity with k. For example, in the case of the Torelli group${\rm{I(S}}_g )$, we prove that${\rm{L(I(S}}_g ))$, the logarithm of the minimal dilatation in${\rm{I(S}}_g )$, satisfies .197 <${\rm{L(I(S}}_g ))$< 4.127. In contrast, we find pseudo-Anosov mapping classes acting trivially on$\Gamma /\Gamma _k $whose asymptotic translation lengths on the complex of curves tend to 0 as g → ∞.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.0.0005</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Algebra ; Asymptotic methods ; Braiding ; Closed curves ; Crushing ; Curves ; Dilatation ; Exact sciences and technology ; General mathematics ; General, history and biography ; Global analysis, analysis on manifolds ; Homeomorphism ; Logarithms ; Manifolds and cell complexes ; Mathematical theorems ; Mathematics ; Sciences and techniques of general use ; Topological manifolds ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>American journal of mathematics, 2008-06, Vol.130 (3), p.799-827</ispartof><rights>Copyright 2008 The Johns Hopkins University Press</rights><rights>Copyright © 2008 The Johns Hopkins University Press.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Jun 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-8730e34999f04732ee8ef73ab8dd97ae265c80debe90ac72dcdb0e637ab38a553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40068147$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40068147$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21127,27924,27925,56842,57402,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20416073$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Farb, Benson</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Margalit, Dan</creatorcontrib><title>The Lower Central Series and Pseudo-Anosov Dilatations</title><title>American journal of mathematics</title><description>The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface${\rm{S}}_{\rm{g}}$of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$tends to zero at the rate 1/g. We consider here the smallest dilatation of any pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$acting trivially on$\Gamma /\Gamma _k $, the quotient of$\Gamma \, = \,\pi _1 (S_g )$by the${\rm{K}}^{{\rm{th}}}$term of its lower central series, k > 1. In contrast to Penner's asymptotics, we prove that this minimal dilatation is bounded above and below, independently of g, with bounds tending to infinity with k. For example, in the case of the Torelli group${\rm{I(S}}_g )$, we prove that${\rm{L(I(S}}_g ))$, the logarithm of the minimal dilatation in${\rm{I(S}}_g )$, satisfies .197 <${\rm{L(I(S}}_g ))$< 4.127. In contrast, we find pseudo-Anosov mapping classes acting trivially on$\Gamma /\Gamma _k $whose asymptotic translation lengths on the complex of curves tend to 0 as g → ∞.</description><subject>Algebra</subject><subject>Asymptotic methods</subject><subject>Braiding</subject><subject>Closed curves</subject><subject>Crushing</subject><subject>Curves</subject><subject>Dilatation</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Global analysis, analysis on manifolds</subject><subject>Homeomorphism</subject><subject>Logarithms</subject><subject>Manifolds and cell complexes</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Topological manifolds</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkFtLwzAUx4MoOKcvvgtF8EXoPLm0SR9lXmGgsPkc0vQUW7ZmJq3itzdlY_h0yMn_cvgRcklhRnnG70y7mcEMALIjMqGgIM25lMdkElcsLTiTp-QshDY-QQKbkHz1icnC_aBP5tj13qyTJfoGQ2K6KnkPOFQuve9ccN_JQ7M2vekb14VzclKbdcCL_ZySj6fH1fwlXbw9v87vF6kVjPapkhyQi6IoahCSM0SFteSmVFVVSIMsz6yCCksswFjJKluVgPFkU3JlsoxPyfUud-vd14Ch160bfBcrNeN5JqhkKopudyLrXQgea731zcb4X01Bj1h0xKJBj1ii-GafaII169qbzjbh4GAgaA6SR504NLdo-80Q8H95QTOhlyPikTAoHtPzItqudrY29M4fYkX8VDQi-ANu9nqs</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Farb, Benson</creator><creator>Leininger, Christopher J.</creator><creator>Margalit, Dan</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20080601</creationdate><title>The Lower Central Series and Pseudo-Anosov Dilatations</title><author>Farb, Benson ; Leininger, Christopher J. ; Margalit, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-8730e34999f04732ee8ef73ab8dd97ae265c80debe90ac72dcdb0e637ab38a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Asymptotic methods</topic><topic>Braiding</topic><topic>Closed curves</topic><topic>Crushing</topic><topic>Curves</topic><topic>Dilatation</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Global analysis, analysis on manifolds</topic><topic>Homeomorphism</topic><topic>Logarithms</topic><topic>Manifolds and cell complexes</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Topological manifolds</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farb, Benson</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Margalit, Dan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farb, Benson</au><au>Leininger, Christopher J.</au><au>Margalit, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lower Central Series and Pseudo-Anosov Dilatations</atitle><jtitle>American journal of mathematics</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>130</volume><issue>3</issue><spage>799</spage><epage>827</epage><pages>799-827</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface${\rm{S}}_{\rm{g}}$of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$tends to zero at the rate 1/g. We consider here the smallest dilatation of any pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$acting trivially on$\Gamma /\Gamma _k $, the quotient of$\Gamma \, = \,\pi _1 (S_g )$by the${\rm{K}}^{{\rm{th}}}$term of its lower central series, k > 1. In contrast to Penner's asymptotics, we prove that this minimal dilatation is bounded above and below, independently of g, with bounds tending to infinity with k. For example, in the case of the Torelli group${\rm{I(S}}_g )$, we prove that${\rm{L(I(S}}_g ))$, the logarithm of the minimal dilatation in${\rm{I(S}}_g )$, satisfies .197 <${\rm{L(I(S}}_g ))$< 4.127. In contrast, we find pseudo-Anosov mapping classes acting trivially on$\Gamma /\Gamma _k $whose asymptotic translation lengths on the complex of curves tend to 0 as g → ∞.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.0.0005</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2008-06, Vol.130 (3), p.799-827 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_236541728 |
source | Project Muse Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Asymptotic methods Braiding Closed curves Crushing Curves Dilatation Exact sciences and technology General mathematics General, history and biography Global analysis, analysis on manifolds Homeomorphism Logarithms Manifolds and cell complexes Mathematical theorems Mathematics Sciences and techniques of general use Topological manifolds Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | The Lower Central Series and Pseudo-Anosov Dilatations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lower%20Central%20Series%20and%20Pseudo-Anosov%20Dilatations&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Farb,%20Benson&rft.date=2008-06-01&rft.volume=130&rft.issue=3&rft.spage=799&rft.epage=827&rft.pages=799-827&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.0.0005&rft_dat=%3Cjstor_proqu%3E40068147%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236541728&rft_id=info:pmid/&rft_jstor_id=40068147&rfr_iscdi=true |