The Lower Central Series and Pseudo-Anosov Dilatations

The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface${\rm{S}}_{\rm{g}}$of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$tends to zero at the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2008-06, Vol.130 (3), p.799-827
Hauptverfasser: Farb, Benson, Leininger, Christopher J., Margalit, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue 3
container_start_page 799
container_title American journal of mathematics
container_volume 130
creator Farb, Benson
Leininger, Christopher J.
Margalit, Dan
description The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface${\rm{S}}_{\rm{g}}$of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$tends to zero at the rate 1/g. We consider here the smallest dilatation of any pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$acting trivially on$\Gamma /\Gamma _k $, the quotient of$\Gamma \, = \,\pi _1 (S_g )$by the${\rm{K}}^{{\rm{th}}}$term of its lower central series, k > 1. In contrast to Penner's asymptotics, we prove that this minimal dilatation is bounded above and below, independently of g, with bounds tending to infinity with k. For example, in the case of the Torelli group${\rm{I(S}}_g )$, we prove that${\rm{L(I(S}}_g ))$, the logarithm of the minimal dilatation in${\rm{I(S}}_g )$, satisfies .197
doi_str_mv 10.1353/ajm.0.0005
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_236541728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40068147</jstor_id><sourcerecordid>40068147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-8730e34999f04732ee8ef73ab8dd97ae265c80debe90ac72dcdb0e637ab38a553</originalsourceid><addsrcrecordid>eNpNkFtLwzAUx4MoOKcvvgtF8EXoPLm0SR9lXmGgsPkc0vQUW7ZmJq3itzdlY_h0yMn_cvgRcklhRnnG70y7mcEMALIjMqGgIM25lMdkElcsLTiTp-QshDY-QQKbkHz1icnC_aBP5tj13qyTJfoGQ2K6KnkPOFQuve9ccN_JQ7M2vekb14VzclKbdcCL_ZySj6fH1fwlXbw9v87vF6kVjPapkhyQi6IoahCSM0SFteSmVFVVSIMsz6yCCksswFjJKluVgPFkU3JlsoxPyfUud-vd14Ch160bfBcrNeN5JqhkKopudyLrXQgea731zcb4X01Bj1h0xKJBj1ii-GafaII169qbzjbh4GAgaA6SR504NLdo-80Q8H95QTOhlyPikTAoHtPzItqudrY29M4fYkX8VDQi-ANu9nqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236541728</pqid></control><display><type>article</type><title>The Lower Central Series and Pseudo-Anosov Dilatations</title><source>Project Muse Premium Collection</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Farb, Benson ; Leininger, Christopher J. ; Margalit, Dan</creator><creatorcontrib>Farb, Benson ; Leininger, Christopher J. ; Margalit, Dan</creatorcontrib><description>The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface${\rm{S}}_{\rm{g}}$of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$tends to zero at the rate 1/g. We consider here the smallest dilatation of any pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$acting trivially on$\Gamma /\Gamma _k $, the quotient of$\Gamma \, = \,\pi _1 (S_g )$by the${\rm{K}}^{{\rm{th}}}$term of its lower central series, k &gt; 1. In contrast to Penner's asymptotics, we prove that this minimal dilatation is bounded above and below, independently of g, with bounds tending to infinity with k. For example, in the case of the Torelli group${\rm{I(S}}_g )$, we prove that${\rm{L(I(S}}_g ))$, the logarithm of the minimal dilatation in${\rm{I(S}}_g )$, satisfies .197 &lt;${\rm{L(I(S}}_g ))$&lt; 4.127. In contrast, we find pseudo-Anosov mapping classes acting trivially on$\Gamma /\Gamma _k $whose asymptotic translation lengths on the complex of curves tend to 0 as g → ∞.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.0.0005</identifier><identifier>CODEN: AJMAAN</identifier><language>eng</language><publisher>Baltimore, MD: Johns Hopkins University Press</publisher><subject>Algebra ; Asymptotic methods ; Braiding ; Closed curves ; Crushing ; Curves ; Dilatation ; Exact sciences and technology ; General mathematics ; General, history and biography ; Global analysis, analysis on manifolds ; Homeomorphism ; Logarithms ; Manifolds and cell complexes ; Mathematical theorems ; Mathematics ; Sciences and techniques of general use ; Topological manifolds ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>American journal of mathematics, 2008-06, Vol.130 (3), p.799-827</ispartof><rights>Copyright 2008 The Johns Hopkins University Press</rights><rights>Copyright © 2008 The Johns Hopkins University Press.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Johns Hopkins University Press Jun 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-8730e34999f04732ee8ef73ab8dd97ae265c80debe90ac72dcdb0e637ab38a553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40068147$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40068147$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21127,27924,27925,56842,57402,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20416073$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Farb, Benson</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Margalit, Dan</creatorcontrib><title>The Lower Central Series and Pseudo-Anosov Dilatations</title><title>American journal of mathematics</title><description>The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface${\rm{S}}_{\rm{g}}$of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$tends to zero at the rate 1/g. We consider here the smallest dilatation of any pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$acting trivially on$\Gamma /\Gamma _k $, the quotient of$\Gamma \, = \,\pi _1 (S_g )$by the${\rm{K}}^{{\rm{th}}}$term of its lower central series, k &gt; 1. In contrast to Penner's asymptotics, we prove that this minimal dilatation is bounded above and below, independently of g, with bounds tending to infinity with k. For example, in the case of the Torelli group${\rm{I(S}}_g )$, we prove that${\rm{L(I(S}}_g ))$, the logarithm of the minimal dilatation in${\rm{I(S}}_g )$, satisfies .197 &lt;${\rm{L(I(S}}_g ))$&lt; 4.127. In contrast, we find pseudo-Anosov mapping classes acting trivially on$\Gamma /\Gamma _k $whose asymptotic translation lengths on the complex of curves tend to 0 as g → ∞.</description><subject>Algebra</subject><subject>Asymptotic methods</subject><subject>Braiding</subject><subject>Closed curves</subject><subject>Crushing</subject><subject>Curves</subject><subject>Dilatation</subject><subject>Exact sciences and technology</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Global analysis, analysis on manifolds</subject><subject>Homeomorphism</subject><subject>Logarithms</subject><subject>Manifolds and cell complexes</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Topological manifolds</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkFtLwzAUx4MoOKcvvgtF8EXoPLm0SR9lXmGgsPkc0vQUW7ZmJq3itzdlY_h0yMn_cvgRcklhRnnG70y7mcEMALIjMqGgIM25lMdkElcsLTiTp-QshDY-QQKbkHz1icnC_aBP5tj13qyTJfoGQ2K6KnkPOFQuve9ccN_JQ7M2vekb14VzclKbdcCL_ZySj6fH1fwlXbw9v87vF6kVjPapkhyQi6IoahCSM0SFteSmVFVVSIMsz6yCCksswFjJKluVgPFkU3JlsoxPyfUud-vd14Ch160bfBcrNeN5JqhkKopudyLrXQgea731zcb4X01Bj1h0xKJBj1ii-GafaII169qbzjbh4GAgaA6SR504NLdo-80Q8H95QTOhlyPikTAoHtPzItqudrY29M4fYkX8VDQi-ANu9nqs</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Farb, Benson</creator><creator>Leininger, Christopher J.</creator><creator>Margalit, Dan</creator><general>Johns Hopkins University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20080601</creationdate><title>The Lower Central Series and Pseudo-Anosov Dilatations</title><author>Farb, Benson ; Leininger, Christopher J. ; Margalit, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-8730e34999f04732ee8ef73ab8dd97ae265c80debe90ac72dcdb0e637ab38a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Asymptotic methods</topic><topic>Braiding</topic><topic>Closed curves</topic><topic>Crushing</topic><topic>Curves</topic><topic>Dilatation</topic><topic>Exact sciences and technology</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Global analysis, analysis on manifolds</topic><topic>Homeomorphism</topic><topic>Logarithms</topic><topic>Manifolds and cell complexes</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Topological manifolds</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farb, Benson</creatorcontrib><creatorcontrib>Leininger, Christopher J.</creatorcontrib><creatorcontrib>Margalit, Dan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farb, Benson</au><au>Leininger, Christopher J.</au><au>Margalit, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lower Central Series and Pseudo-Anosov Dilatations</atitle><jtitle>American journal of mathematics</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>130</volume><issue>3</issue><spage>799</spage><epage>827</epage><pages>799-827</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><coden>AJMAAN</coden><abstract>The theme of this paper is that algebraic complexity implies dynamical complexity for pseudo-Anosov homeomorphisms of a closed surface${\rm{S}}_{\rm{g}}$of genus g. Penner proved that the logarithm of the minimal dilatation for a pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$tends to zero at the rate 1/g. We consider here the smallest dilatation of any pseudo-Anosov homeomorphism of${\rm{S}}_{\rm{g}}$acting trivially on$\Gamma /\Gamma _k $, the quotient of$\Gamma \, = \,\pi _1 (S_g )$by the${\rm{K}}^{{\rm{th}}}$term of its lower central series, k &gt; 1. In contrast to Penner's asymptotics, we prove that this minimal dilatation is bounded above and below, independently of g, with bounds tending to infinity with k. For example, in the case of the Torelli group${\rm{I(S}}_g )$, we prove that${\rm{L(I(S}}_g ))$, the logarithm of the minimal dilatation in${\rm{I(S}}_g )$, satisfies .197 &lt;${\rm{L(I(S}}_g ))$&lt; 4.127. In contrast, we find pseudo-Anosov mapping classes acting trivially on$\Gamma /\Gamma _k $whose asymptotic translation lengths on the complex of curves tend to 0 as g → ∞.</abstract><cop>Baltimore, MD</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.0.0005</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9327
ispartof American journal of mathematics, 2008-06, Vol.130 (3), p.799-827
issn 0002-9327
1080-6377
1080-6377
language eng
recordid cdi_proquest_journals_236541728
source Project Muse Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algebra
Asymptotic methods
Braiding
Closed curves
Crushing
Curves
Dilatation
Exact sciences and technology
General mathematics
General, history and biography
Global analysis, analysis on manifolds
Homeomorphism
Logarithms
Manifolds and cell complexes
Mathematical theorems
Mathematics
Sciences and techniques of general use
Topological manifolds
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title The Lower Central Series and Pseudo-Anosov Dilatations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lower%20Central%20Series%20and%20Pseudo-Anosov%20Dilatations&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Farb,%20Benson&rft.date=2008-06-01&rft.volume=130&rft.issue=3&rft.spage=799&rft.epage=827&rft.pages=799-827&rft.issn=0002-9327&rft.eissn=1080-6377&rft.coden=AJMAAN&rft_id=info:doi/10.1353/ajm.0.0005&rft_dat=%3Cjstor_proqu%3E40068147%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236541728&rft_id=info:pmid/&rft_jstor_id=40068147&rfr_iscdi=true