Photophysics of Semiconductor Polymer Nanocomposite with Fullerene C60 and Endohedral Metallofullerene Ho@C82

The photoexcitation energy transfer in donor–acceptor (DA) systems formed from a mixture of semiconductor polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with fullerene C 60 and endohedral metallofullerene Ho@C 82 have been investigated. It is established that the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the solid state 2020, Vol.62 (1), p.206-213
Hauptverfasser: Kareev, I. E., Bubnov, V. P., Alidzhanov, E. K., Pashkevich, S. N., Lantukh, Yu. D., Letuta, S. N., Razdobreev, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 1
container_start_page 206
container_title Physics of the solid state
container_volume 62
creator Kareev, I. E.
Bubnov, V. P.
Alidzhanov, E. K.
Pashkevich, S. N.
Lantukh, Yu. D.
Letuta, S. N.
Razdobreev, D. A.
description The photoexcitation energy transfer in donor–acceptor (DA) systems formed from a mixture of semiconductor polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with fullerene C 60 and endohedral metallofullerene Ho@C 82 have been investigated. It is established that the migration of excitons between polymer segments significantly affect the quenching of MEH-PPV luminescence. The Forster radii of nonradiative energy transfer are estimated for the DA systems under study. It is shown that the DA system formed using endohedral metallofullerenes is most efficient. Model photovoltaic cells with different C 60 and Ho@C 82 doping levels are formed based on MEH-PPV. The spectral sensitivity of photovoltage and kinetics of rise in the photovoltage signal under pulsed irradiation are measured for the formed cells. The charge carrier mobility in the polymer composites under study is estimated. It is established that a change in the endohedral metallofullerene concentration within 1–2% makes it possible to change the effective free-carrier mobility of the polymer heterojunction.
doi_str_mv 10.1134/S1063783420010163
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2365347456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365347456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2313-cabbc2bc69262eae4bd3ab66be75f803095d44bd54e412af1c01740435aa68ae3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9H9l01yU0K1QtVC9Rw2m4lJSTJxN0H67U2p6EE8zTDze-_BI-SSs2vOpbrZcKZlFEslGOOMa3lEZpwlLNBKs-P9rmWw_5-SM--3E8R5mMxIu65wwL7a-dp6iiXdQFtb7IrRDujoGptdC44-mw4ttj36egD6WQ8VvR-bBhx0QFPNqOkKuugKrKBwpqFPMJimwfKHWeJtGotzclKaxsPF95yTt_vFa7oMVi8Pj-ndKrBCchlYk-dW5FYnQgswoPJCmlzrHKKwjJlkSVio6RgqUFyYklvGI8WUDI3RsQE5J1cH397hxwh-yLY4um6KzITUoVSRCvVE8QNlHXrvoMx6V7fG7TLOsn2r2Z9WJ404aPzEdu_gfp3_F30BdlF5qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365347456</pqid></control><display><type>article</type><title>Photophysics of Semiconductor Polymer Nanocomposite with Fullerene C60 and Endohedral Metallofullerene Ho@C82</title><source>SpringerLink_现刊</source><creator>Kareev, I. E. ; Bubnov, V. P. ; Alidzhanov, E. K. ; Pashkevich, S. N. ; Lantukh, Yu. D. ; Letuta, S. N. ; Razdobreev, D. A.</creator><creatorcontrib>Kareev, I. E. ; Bubnov, V. P. ; Alidzhanov, E. K. ; Pashkevich, S. N. ; Lantukh, Yu. D. ; Letuta, S. N. ; Razdobreev, D. A.</creatorcontrib><description>The photoexcitation energy transfer in donor–acceptor (DA) systems formed from a mixture of semiconductor polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with fullerene C 60 and endohedral metallofullerene Ho@C 82 have been investigated. It is established that the migration of excitons between polymer segments significantly affect the quenching of MEH-PPV luminescence. The Forster radii of nonradiative energy transfer are estimated for the DA systems under study. It is shown that the DA system formed using endohedral metallofullerenes is most efficient. Model photovoltaic cells with different C 60 and Ho@C 82 doping levels are formed based on MEH-PPV. The spectral sensitivity of photovoltage and kinetics of rise in the photovoltage signal under pulsed irradiation are measured for the formed cells. The charge carrier mobility in the polymer composites under study is estimated. It is established that a change in the endohedral metallofullerene concentration within 1–2% makes it possible to change the effective free-carrier mobility of the polymer heterojunction.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783420010163</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Buckminsterfullerene ; Carrier mobility ; Current carriers ; Energy transfer ; Excitons ; Fullerenes ; Heterojunctions ; Metallofullerenes ; Nanocomposites ; Photoexcitation ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Polymer matrix composites ; Polymers ; Polyphenylene vinylene ; Solid State Physics ; Spectral sensitivity</subject><ispartof>Physics of the solid state, 2020, Vol.62 (1), p.206-213</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>2020© Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2313-cabbc2bc69262eae4bd3ab66be75f803095d44bd54e412af1c01740435aa68ae3</citedby><cites>FETCH-LOGICAL-c2313-cabbc2bc69262eae4bd3ab66be75f803095d44bd54e412af1c01740435aa68ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783420010163$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783420010163$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kareev, I. E.</creatorcontrib><creatorcontrib>Bubnov, V. P.</creatorcontrib><creatorcontrib>Alidzhanov, E. K.</creatorcontrib><creatorcontrib>Pashkevich, S. N.</creatorcontrib><creatorcontrib>Lantukh, Yu. D.</creatorcontrib><creatorcontrib>Letuta, S. N.</creatorcontrib><creatorcontrib>Razdobreev, D. A.</creatorcontrib><title>Photophysics of Semiconductor Polymer Nanocomposite with Fullerene C60 and Endohedral Metallofullerene Ho@C82</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>The photoexcitation energy transfer in donor–acceptor (DA) systems formed from a mixture of semiconductor polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with fullerene C 60 and endohedral metallofullerene Ho@C 82 have been investigated. It is established that the migration of excitons between polymer segments significantly affect the quenching of MEH-PPV luminescence. The Forster radii of nonradiative energy transfer are estimated for the DA systems under study. It is shown that the DA system formed using endohedral metallofullerenes is most efficient. Model photovoltaic cells with different C 60 and Ho@C 82 doping levels are formed based on MEH-PPV. The spectral sensitivity of photovoltage and kinetics of rise in the photovoltage signal under pulsed irradiation are measured for the formed cells. The charge carrier mobility in the polymer composites under study is estimated. It is established that a change in the endohedral metallofullerene concentration within 1–2% makes it possible to change the effective free-carrier mobility of the polymer heterojunction.</description><subject>Buckminsterfullerene</subject><subject>Carrier mobility</subject><subject>Current carriers</subject><subject>Energy transfer</subject><subject>Excitons</subject><subject>Fullerenes</subject><subject>Heterojunctions</subject><subject>Metallofullerenes</subject><subject>Nanocomposites</subject><subject>Photoexcitation</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polyphenylene vinylene</subject><subject>Solid State Physics</subject><subject>Spectral sensitivity</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9H9l01yU0K1QtVC9Rw2m4lJSTJxN0H67U2p6EE8zTDze-_BI-SSs2vOpbrZcKZlFEslGOOMa3lEZpwlLNBKs-P9rmWw_5-SM--3E8R5mMxIu65wwL7a-dp6iiXdQFtb7IrRDujoGptdC44-mw4ttj36egD6WQ8VvR-bBhx0QFPNqOkKuugKrKBwpqFPMJimwfKHWeJtGotzclKaxsPF95yTt_vFa7oMVi8Pj-ndKrBCchlYk-dW5FYnQgswoPJCmlzrHKKwjJlkSVio6RgqUFyYklvGI8WUDI3RsQE5J1cH397hxwh-yLY4um6KzITUoVSRCvVE8QNlHXrvoMx6V7fG7TLOsn2r2Z9WJ404aPzEdu_gfp3_F30BdlF5qg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kareev, I. E.</creator><creator>Bubnov, V. P.</creator><creator>Alidzhanov, E. K.</creator><creator>Pashkevich, S. N.</creator><creator>Lantukh, Yu. D.</creator><creator>Letuta, S. N.</creator><creator>Razdobreev, D. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Photophysics of Semiconductor Polymer Nanocomposite with Fullerene C60 and Endohedral Metallofullerene Ho@C82</title><author>Kareev, I. E. ; Bubnov, V. P. ; Alidzhanov, E. K. ; Pashkevich, S. N. ; Lantukh, Yu. D. ; Letuta, S. N. ; Razdobreev, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2313-cabbc2bc69262eae4bd3ab66be75f803095d44bd54e412af1c01740435aa68ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Buckminsterfullerene</topic><topic>Carrier mobility</topic><topic>Current carriers</topic><topic>Energy transfer</topic><topic>Excitons</topic><topic>Fullerenes</topic><topic>Heterojunctions</topic><topic>Metallofullerenes</topic><topic>Nanocomposites</topic><topic>Photoexcitation</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polyphenylene vinylene</topic><topic>Solid State Physics</topic><topic>Spectral sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kareev, I. E.</creatorcontrib><creatorcontrib>Bubnov, V. P.</creatorcontrib><creatorcontrib>Alidzhanov, E. K.</creatorcontrib><creatorcontrib>Pashkevich, S. N.</creatorcontrib><creatorcontrib>Lantukh, Yu. D.</creatorcontrib><creatorcontrib>Letuta, S. N.</creatorcontrib><creatorcontrib>Razdobreev, D. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kareev, I. E.</au><au>Bubnov, V. P.</au><au>Alidzhanov, E. K.</au><au>Pashkevich, S. N.</au><au>Lantukh, Yu. D.</au><au>Letuta, S. N.</au><au>Razdobreev, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photophysics of Semiconductor Polymer Nanocomposite with Fullerene C60 and Endohedral Metallofullerene Ho@C82</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2020</date><risdate>2020</risdate><volume>62</volume><issue>1</issue><spage>206</spage><epage>213</epage><pages>206-213</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>The photoexcitation energy transfer in donor–acceptor (DA) systems formed from a mixture of semiconductor polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with fullerene C 60 and endohedral metallofullerene Ho@C 82 have been investigated. It is established that the migration of excitons between polymer segments significantly affect the quenching of MEH-PPV luminescence. The Forster radii of nonradiative energy transfer are estimated for the DA systems under study. It is shown that the DA system formed using endohedral metallofullerenes is most efficient. Model photovoltaic cells with different C 60 and Ho@C 82 doping levels are formed based on MEH-PPV. The spectral sensitivity of photovoltage and kinetics of rise in the photovoltage signal under pulsed irradiation are measured for the formed cells. The charge carrier mobility in the polymer composites under study is estimated. It is established that a change in the endohedral metallofullerene concentration within 1–2% makes it possible to change the effective free-carrier mobility of the polymer heterojunction.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783420010163</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7834
ispartof Physics of the solid state, 2020, Vol.62 (1), p.206-213
issn 1063-7834
1090-6460
language eng
recordid cdi_proquest_journals_2365347456
source SpringerLink_现刊
subjects Buckminsterfullerene
Carrier mobility
Current carriers
Energy transfer
Excitons
Fullerenes
Heterojunctions
Metallofullerenes
Nanocomposites
Photoexcitation
Photovoltaic cells
Physics
Physics and Astronomy
Polymer matrix composites
Polymers
Polyphenylene vinylene
Solid State Physics
Spectral sensitivity
title Photophysics of Semiconductor Polymer Nanocomposite with Fullerene C60 and Endohedral Metallofullerene Ho@C82
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photophysics%20of%20Semiconductor%20Polymer%20Nanocomposite%20with%20Fullerene%20C60%20and%20Endohedral%20Metallofullerene%20Ho@C82&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Kareev,%20I.%20E.&rft.date=2020&rft.volume=62&rft.issue=1&rft.spage=206&rft.epage=213&rft.pages=206-213&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783420010163&rft_dat=%3Cproquest_cross%3E2365347456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365347456&rft_id=info:pmid/&rfr_iscdi=true