Weighted quasisymmetric enumerator for generalized permutohedra
We introduce a weighted quasisymmetric enumerator function associated with generalized permutohedra. It refines the Billera, Jia and Reiner quasisymmetric function which also includes the Stanley chromatic symmetric function. Besides that, it carries information of face numbers of generalized permut...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2020-03, Vol.51 (2), p.247-272 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272 |
---|---|
container_issue | 2 |
container_start_page | 247 |
container_title | Journal of algebraic combinatorics |
container_volume | 51 |
creator | Grujić, Vladimir Pešović, Marko Stojadinović, Tanja |
description | We introduce a weighted quasisymmetric enumerator function associated with generalized permutohedra. It refines the Billera, Jia and Reiner quasisymmetric function which also includes the Stanley chromatic symmetric function. Besides that, it carries information of face numbers of generalized permutohedra. We consider more systematically the cases of nestohedra and matroid base polytopes. |
doi_str_mv | 10.1007/s10801-019-00874-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2365343368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365343368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-73909f5d205a0e327f1260c3392d7e9d7748be53e8b010301853331a9319788e3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeC59WZnWx39yRS_ALBi-JxSZNJm9I07W4Crb_e1QjePAzDwPO-A48QlwjXCGBuIoIFlIBOAliTyf2RGKE2Sjp06liMwCktnXXuVJzFuAIAZ1GPxO0H14tlx-Vk1-exjoem4S7UxYQ3fcMh79owqdIseJOudf2ZyC2Hpu_aJZchPxcnVb6OfPG7x-L94f5t9iRfXh-fZ3cvsiDMOmnIgat0qUDnwKRMhWoKBZFTpWFXGpPZOWtiOwcEArSaiDB3hM5YyzQWV0PvNrS7nmPnV20fNumlVzTVlBFNbaLUQBWhjTFw5behbvJw8Aj-W5QfRPkkyv-I8vsUoiEUE7xZcPir_if1BQvgawY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365343368</pqid></control><display><type>article</type><title>Weighted quasisymmetric enumerator for generalized permutohedra</title><source>SpringerLink Journals - AutoHoldings</source><creator>Grujić, Vladimir ; Pešović, Marko ; Stojadinović, Tanja</creator><creatorcontrib>Grujić, Vladimir ; Pešović, Marko ; Stojadinović, Tanja</creatorcontrib><description>We introduce a weighted quasisymmetric enumerator function associated with generalized permutohedra. It refines the Billera, Jia and Reiner quasisymmetric function which also includes the Stanley chromatic symmetric function. Besides that, it carries information of face numbers of generalized permutohedra. We consider more systematically the cases of nestohedra and matroid base polytopes.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-019-00874-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Polytopes</subject><ispartof>Journal of algebraic combinatorics, 2020-03, Vol.51 (2), p.247-272</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-73909f5d205a0e327f1260c3392d7e9d7748be53e8b010301853331a9319788e3</cites><orcidid>0000-0002-2306-2891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-019-00874-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-019-00874-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Grujić, Vladimir</creatorcontrib><creatorcontrib>Pešović, Marko</creatorcontrib><creatorcontrib>Stojadinović, Tanja</creatorcontrib><title>Weighted quasisymmetric enumerator for generalized permutohedra</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>We introduce a weighted quasisymmetric enumerator function associated with generalized permutohedra. It refines the Billera, Jia and Reiner quasisymmetric function which also includes the Stanley chromatic symmetric function. Besides that, it carries information of face numbers of generalized permutohedra. We consider more systematically the cases of nestohedra and matroid base polytopes.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Polytopes</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeC59WZnWx39yRS_ALBi-JxSZNJm9I07W4Crb_e1QjePAzDwPO-A48QlwjXCGBuIoIFlIBOAliTyf2RGKE2Sjp06liMwCktnXXuVJzFuAIAZ1GPxO0H14tlx-Vk1-exjoem4S7UxYQ3fcMh79owqdIseJOudf2ZyC2Hpu_aJZchPxcnVb6OfPG7x-L94f5t9iRfXh-fZ3cvsiDMOmnIgat0qUDnwKRMhWoKBZFTpWFXGpPZOWtiOwcEArSaiDB3hM5YyzQWV0PvNrS7nmPnV20fNumlVzTVlBFNbaLUQBWhjTFw5behbvJw8Aj-W5QfRPkkyv-I8vsUoiEUE7xZcPir_if1BQvgawY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Grujić, Vladimir</creator><creator>Pešović, Marko</creator><creator>Stojadinović, Tanja</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2306-2891</orcidid></search><sort><creationdate>20200301</creationdate><title>Weighted quasisymmetric enumerator for generalized permutohedra</title><author>Grujić, Vladimir ; Pešović, Marko ; Stojadinović, Tanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-73909f5d205a0e327f1260c3392d7e9d7748be53e8b010301853331a9319788e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Polytopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grujić, Vladimir</creatorcontrib><creatorcontrib>Pešović, Marko</creatorcontrib><creatorcontrib>Stojadinović, Tanja</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grujić, Vladimir</au><au>Pešović, Marko</au><au>Stojadinović, Tanja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted quasisymmetric enumerator for generalized permutohedra</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>51</volume><issue>2</issue><spage>247</spage><epage>272</epage><pages>247-272</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>We introduce a weighted quasisymmetric enumerator function associated with generalized permutohedra. It refines the Billera, Jia and Reiner quasisymmetric function which also includes the Stanley chromatic symmetric function. Besides that, it carries information of face numbers of generalized permutohedra. We consider more systematically the cases of nestohedra and matroid base polytopes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-019-00874-x</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-2306-2891</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9899 |
ispartof | Journal of algebraic combinatorics, 2020-03, Vol.51 (2), p.247-272 |
issn | 0925-9899 1572-9192 |
language | eng |
recordid | cdi_proquest_journals_2365343368 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorics Computer Science Convex and Discrete Geometry Group Theory and Generalizations Lattices Mathematics Mathematics and Statistics Order Ordered Algebraic Structures Polytopes |
title | Weighted quasisymmetric enumerator for generalized permutohedra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20quasisymmetric%20enumerator%20for%20generalized%20permutohedra&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Gruji%C4%87,%20Vladimir&rft.date=2020-03-01&rft.volume=51&rft.issue=2&rft.spage=247&rft.epage=272&rft.pages=247-272&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-019-00874-x&rft_dat=%3Cproquest_cross%3E2365343368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365343368&rft_id=info:pmid/&rfr_iscdi=true |