Weighted quasisymmetric enumerator for generalized permutohedra

We introduce a weighted quasisymmetric enumerator function associated with generalized permutohedra. It refines the Billera, Jia and Reiner quasisymmetric function which also includes the Stanley chromatic symmetric function. Besides that, it carries information of face numbers of generalized permut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2020-03, Vol.51 (2), p.247-272
Hauptverfasser: Grujić, Vladimir, Pešović, Marko, Stojadinović, Tanja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 272
container_issue 2
container_start_page 247
container_title Journal of algebraic combinatorics
container_volume 51
creator Grujić, Vladimir
Pešović, Marko
Stojadinović, Tanja
description We introduce a weighted quasisymmetric enumerator function associated with generalized permutohedra. It refines the Billera, Jia and Reiner quasisymmetric function which also includes the Stanley chromatic symmetric function. Besides that, it carries information of face numbers of generalized permutohedra. We consider more systematically the cases of nestohedra and matroid base polytopes.
doi_str_mv 10.1007/s10801-019-00874-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2365343368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365343368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-73909f5d205a0e327f1260c3392d7e9d7748be53e8b010301853331a9319788e3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeC59WZnWx39yRS_ALBi-JxSZNJm9I07W4Crb_e1QjePAzDwPO-A48QlwjXCGBuIoIFlIBOAliTyf2RGKE2Sjp06liMwCktnXXuVJzFuAIAZ1GPxO0H14tlx-Vk1-exjoem4S7UxYQ3fcMh79owqdIseJOudf2ZyC2Hpu_aJZchPxcnVb6OfPG7x-L94f5t9iRfXh-fZ3cvsiDMOmnIgat0qUDnwKRMhWoKBZFTpWFXGpPZOWtiOwcEArSaiDB3hM5YyzQWV0PvNrS7nmPnV20fNumlVzTVlBFNbaLUQBWhjTFw5behbvJw8Aj-W5QfRPkkyv-I8vsUoiEUE7xZcPir_if1BQvgawY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365343368</pqid></control><display><type>article</type><title>Weighted quasisymmetric enumerator for generalized permutohedra</title><source>SpringerLink Journals - AutoHoldings</source><creator>Grujić, Vladimir ; Pešović, Marko ; Stojadinović, Tanja</creator><creatorcontrib>Grujić, Vladimir ; Pešović, Marko ; Stojadinović, Tanja</creatorcontrib><description>We introduce a weighted quasisymmetric enumerator function associated with generalized permutohedra. It refines the Billera, Jia and Reiner quasisymmetric function which also includes the Stanley chromatic symmetric function. Besides that, it carries information of face numbers of generalized permutohedra. We consider more systematically the cases of nestohedra and matroid base polytopes.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-019-00874-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Polytopes</subject><ispartof>Journal of algebraic combinatorics, 2020-03, Vol.51 (2), p.247-272</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-73909f5d205a0e327f1260c3392d7e9d7748be53e8b010301853331a9319788e3</cites><orcidid>0000-0002-2306-2891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-019-00874-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-019-00874-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Grujić, Vladimir</creatorcontrib><creatorcontrib>Pešović, Marko</creatorcontrib><creatorcontrib>Stojadinović, Tanja</creatorcontrib><title>Weighted quasisymmetric enumerator for generalized permutohedra</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>We introduce a weighted quasisymmetric enumerator function associated with generalized permutohedra. It refines the Billera, Jia and Reiner quasisymmetric function which also includes the Stanley chromatic symmetric function. Besides that, it carries information of face numbers of generalized permutohedra. We consider more systematically the cases of nestohedra and matroid base polytopes.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Polytopes</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeC59WZnWx39yRS_ALBi-JxSZNJm9I07W4Crb_e1QjePAzDwPO-A48QlwjXCGBuIoIFlIBOAliTyf2RGKE2Sjp06liMwCktnXXuVJzFuAIAZ1GPxO0H14tlx-Vk1-exjoem4S7UxYQ3fcMh79owqdIseJOudf2ZyC2Hpu_aJZchPxcnVb6OfPG7x-L94f5t9iRfXh-fZ3cvsiDMOmnIgat0qUDnwKRMhWoKBZFTpWFXGpPZOWtiOwcEArSaiDB3hM5YyzQWV0PvNrS7nmPnV20fNumlVzTVlBFNbaLUQBWhjTFw5behbvJw8Aj-W5QfRPkkyv-I8vsUoiEUE7xZcPir_if1BQvgawY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Grujić, Vladimir</creator><creator>Pešović, Marko</creator><creator>Stojadinović, Tanja</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2306-2891</orcidid></search><sort><creationdate>20200301</creationdate><title>Weighted quasisymmetric enumerator for generalized permutohedra</title><author>Grujić, Vladimir ; Pešović, Marko ; Stojadinović, Tanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-73909f5d205a0e327f1260c3392d7e9d7748be53e8b010301853331a9319788e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Polytopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grujić, Vladimir</creatorcontrib><creatorcontrib>Pešović, Marko</creatorcontrib><creatorcontrib>Stojadinović, Tanja</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grujić, Vladimir</au><au>Pešović, Marko</au><au>Stojadinović, Tanja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted quasisymmetric enumerator for generalized permutohedra</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>51</volume><issue>2</issue><spage>247</spage><epage>272</epage><pages>247-272</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>We introduce a weighted quasisymmetric enumerator function associated with generalized permutohedra. It refines the Billera, Jia and Reiner quasisymmetric function which also includes the Stanley chromatic symmetric function. Besides that, it carries information of face numbers of generalized permutohedra. We consider more systematically the cases of nestohedra and matroid base polytopes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-019-00874-x</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-2306-2891</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2020-03, Vol.51 (2), p.247-272
issn 0925-9899
1572-9192
language eng
recordid cdi_proquest_journals_2365343368
source SpringerLink Journals - AutoHoldings
subjects Combinatorics
Computer Science
Convex and Discrete Geometry
Group Theory and Generalizations
Lattices
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
Polytopes
title Weighted quasisymmetric enumerator for generalized permutohedra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20quasisymmetric%20enumerator%20for%20generalized%20permutohedra&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Gruji%C4%87,%20Vladimir&rft.date=2020-03-01&rft.volume=51&rft.issue=2&rft.spage=247&rft.epage=272&rft.pages=247-272&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-019-00874-x&rft_dat=%3Cproquest_cross%3E2365343368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365343368&rft_id=info:pmid/&rfr_iscdi=true