Transcriptional regulation of a leucine-responsive regulatory protein for directly controlling lincomycin biosynthesis in Streptomyces lincolnensis

Leucine-responsive regulatory proteins (Lrps) are a family of transcription factors involved in diverse biological processes in bacteria. So far, molecular mechanism of Lrps for regulating antibiotics biosynthesis in actinomycetes remains largely unexplored. This study, for the first time in Strepto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2020-03, Vol.104 (6), p.2575-2587
Hauptverfasser: Xu, Yurong, Tang, Yaqian, Wang, Nian, Liu, Jing, Cai, Xinlu, Cai, Hongyi, Li, Jie, Tan, Guoqing, Liu, Ruihua, Bai, Linquan, Zhang, Lixin, Wu, Hang, Zhang, Buchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2587
container_issue 6
container_start_page 2575
container_title Applied microbiology and biotechnology
container_volume 104
creator Xu, Yurong
Tang, Yaqian
Wang, Nian
Liu, Jing
Cai, Xinlu
Cai, Hongyi
Li, Jie
Tan, Guoqing
Liu, Ruihua
Bai, Linquan
Zhang, Lixin
Wu, Hang
Zhang, Buchang
description Leucine-responsive regulatory proteins (Lrps) are a family of transcription factors involved in diverse biological processes in bacteria. So far, molecular mechanism of Lrps for regulating antibiotics biosynthesis in actinomycetes remains largely unexplored. This study, for the first time in Streptomyces lincolnensis , identified an Lrp (named as SLCG_Lrp) associated with lincomycin production. SLCG_Lrp was validated to be a positive regulator for lincomycin biosynthesis by directly stimulating transcription of two structural genes ( lmbA and lmbV ), three resistance genes ( lmrA , lmrB and lmrC ), and a regulatory gene ( lmbU ) within the lincomycin biosynthetic gene ( lin ) cluster. SLCG_Lrp was transcriptionally self-inhibited and triggered the expression of its adjacent gene SLCG_3127 encoding a LysE superfamily protein. Further, the binding site of SLCG_Lrp in the intergenic region of SLCG_3127 and SLCG_Lrp was precisely identified. Inactivation of SLCG_3127 in S. lincolnensis resulted in yield improvement of lincomycin, which was caused by intracellular accumulation of proline and cysteine. Arginine and phenylalanine were identified as specific regulatory ligands, respectively, to reduce and promote DNA-binding affinity of SLCG_Lrp. We further found that SLCG_Lrp was directly repressed by SLCG_2919, the first identified transcription factor outside lin cluster for lincomycin production. Therefore, our findings revealed SLCG_Lrp-mediated transcriptional regulation of lincomycin biosynthesis. This study extends the understanding of molecular mechanisms underlying lincomycin biosynthetic regulation.
doi_str_mv 10.1007/s00253-020-10381-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2364922141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615423939</galeid><sourcerecordid>A615423939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-1766d1aaa444f8e15c0ae9d90c657ba207465261893f8d9221efc8a94d0d7be13</originalsourceid><addsrcrecordid>eNp9kl2L1TAQhoMo7vHoH_BCAl550TVfTdvLZfFjYUFw1-uQk05rljapSbprf4d_2NTuqgdEAgmTed4JM3kReknJKSWkehsJYSUvCCMFJbymxd0jtKOCs4JIKh6jHaFVWVRlU5-gZzHeEEJZLeVTdMJp0_CK0B36cR20iybYKVnv9IAD9POg1wD7Dms8wGysgyJAnLyL9hYeEB8WPAWfwDrc-YBbG8CkYcHGuxT8MFjX47wZPy65BD5YHxeXvkK0Eef4KgWY0pqEuHGDg_xCfI6edHqI8OL-3KMv799dn38sLj99uDg_uyxMSXkqaCVlS7XWQoiuBloaoqFpG2JkWR00I5WQJZO0bnhXtw1jFDpT60a0pK0OQPkevd7q5i6-zRCTuvFzyEOIinEpVoX4i-r1AMq6zqegzWijUWeSloLxJq89Ov0HlVcLo80Dgc7m-yPBmyPBOjT4nno9x6gurj4fs2xjTfAxBujUFOyow6IoUasV1GYFla2gfllB3WXRq_vu5sMI7W_Jw99ngG9AzCnXQ_jT_n_K_gTyY8HW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364922141</pqid></control><display><type>article</type><title>Transcriptional regulation of a leucine-responsive regulatory protein for directly controlling lincomycin biosynthesis in Streptomyces lincolnensis</title><source>Springer Nature - Complete Springer Journals</source><creator>Xu, Yurong ; Tang, Yaqian ; Wang, Nian ; Liu, Jing ; Cai, Xinlu ; Cai, Hongyi ; Li, Jie ; Tan, Guoqing ; Liu, Ruihua ; Bai, Linquan ; Zhang, Lixin ; Wu, Hang ; Zhang, Buchang</creator><creatorcontrib>Xu, Yurong ; Tang, Yaqian ; Wang, Nian ; Liu, Jing ; Cai, Xinlu ; Cai, Hongyi ; Li, Jie ; Tan, Guoqing ; Liu, Ruihua ; Bai, Linquan ; Zhang, Lixin ; Wu, Hang ; Zhang, Buchang</creatorcontrib><description>Leucine-responsive regulatory proteins (Lrps) are a family of transcription factors involved in diverse biological processes in bacteria. So far, molecular mechanism of Lrps for regulating antibiotics biosynthesis in actinomycetes remains largely unexplored. This study, for the first time in Streptomyces lincolnensis , identified an Lrp (named as SLCG_Lrp) associated with lincomycin production. SLCG_Lrp was validated to be a positive regulator for lincomycin biosynthesis by directly stimulating transcription of two structural genes ( lmbA and lmbV ), three resistance genes ( lmrA , lmrB and lmrC ), and a regulatory gene ( lmbU ) within the lincomycin biosynthetic gene ( lin ) cluster. SLCG_Lrp was transcriptionally self-inhibited and triggered the expression of its adjacent gene SLCG_3127 encoding a LysE superfamily protein. Further, the binding site of SLCG_Lrp in the intergenic region of SLCG_3127 and SLCG_Lrp was precisely identified. Inactivation of SLCG_3127 in S. lincolnensis resulted in yield improvement of lincomycin, which was caused by intracellular accumulation of proline and cysteine. Arginine and phenylalanine were identified as specific regulatory ligands, respectively, to reduce and promote DNA-binding affinity of SLCG_Lrp. We further found that SLCG_Lrp was directly repressed by SLCG_2919, the first identified transcription factor outside lin cluster for lincomycin production. Therefore, our findings revealed SLCG_Lrp-mediated transcriptional regulation of lincomycin biosynthesis. This study extends the understanding of molecular mechanisms underlying lincomycin biosynthetic regulation.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10381-w</identifier><identifier>PMID: 31993701</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actinomycetes ; Antibiotics ; Applied Genetics and Molecular Biotechnology ; Arginine ; Binding sites ; Biological activity ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Blood proteins ; Clusters ; Cysteine ; Deactivation ; Deoxyribonucleic acid ; DNA ; DNA binding proteins ; Ethylenediaminetetraacetic acid ; Gene expression ; Gene regulation ; Genes ; Genetic aspects ; Genetic transcription ; Inactivation ; Leucine ; Life Sciences ; Lincomycin ; Microbial Genetics and Genomics ; Microbiology ; Molecular modelling ; Phenylalanine ; Proline ; Protein binding ; Proteins ; Regulatory proteins ; Spiramycin ; Streptomyces ; Transcription factors</subject><ispartof>Applied microbiology and biotechnology, 2020-03, Vol.104 (6), p.2575-2587</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-1766d1aaa444f8e15c0ae9d90c657ba207465261893f8d9221efc8a94d0d7be13</citedby><cites>FETCH-LOGICAL-c513t-1766d1aaa444f8e15c0ae9d90c657ba207465261893f8d9221efc8a94d0d7be13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10381-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10381-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31993701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Yurong</creatorcontrib><creatorcontrib>Tang, Yaqian</creatorcontrib><creatorcontrib>Wang, Nian</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Cai, Xinlu</creatorcontrib><creatorcontrib>Cai, Hongyi</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Tan, Guoqing</creatorcontrib><creatorcontrib>Liu, Ruihua</creatorcontrib><creatorcontrib>Bai, Linquan</creatorcontrib><creatorcontrib>Zhang, Lixin</creatorcontrib><creatorcontrib>Wu, Hang</creatorcontrib><creatorcontrib>Zhang, Buchang</creatorcontrib><title>Transcriptional regulation of a leucine-responsive regulatory protein for directly controlling lincomycin biosynthesis in Streptomyces lincolnensis</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Leucine-responsive regulatory proteins (Lrps) are a family of transcription factors involved in diverse biological processes in bacteria. So far, molecular mechanism of Lrps for regulating antibiotics biosynthesis in actinomycetes remains largely unexplored. This study, for the first time in Streptomyces lincolnensis , identified an Lrp (named as SLCG_Lrp) associated with lincomycin production. SLCG_Lrp was validated to be a positive regulator for lincomycin biosynthesis by directly stimulating transcription of two structural genes ( lmbA and lmbV ), three resistance genes ( lmrA , lmrB and lmrC ), and a regulatory gene ( lmbU ) within the lincomycin biosynthetic gene ( lin ) cluster. SLCG_Lrp was transcriptionally self-inhibited and triggered the expression of its adjacent gene SLCG_3127 encoding a LysE superfamily protein. Further, the binding site of SLCG_Lrp in the intergenic region of SLCG_3127 and SLCG_Lrp was precisely identified. Inactivation of SLCG_3127 in S. lincolnensis resulted in yield improvement of lincomycin, which was caused by intracellular accumulation of proline and cysteine. Arginine and phenylalanine were identified as specific regulatory ligands, respectively, to reduce and promote DNA-binding affinity of SLCG_Lrp. We further found that SLCG_Lrp was directly repressed by SLCG_2919, the first identified transcription factor outside lin cluster for lincomycin production. Therefore, our findings revealed SLCG_Lrp-mediated transcriptional regulation of lincomycin biosynthesis. This study extends the understanding of molecular mechanisms underlying lincomycin biosynthetic regulation.</description><subject>Actinomycetes</subject><subject>Antibiotics</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Arginine</subject><subject>Binding sites</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Blood proteins</subject><subject>Clusters</subject><subject>Cysteine</subject><subject>Deactivation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Inactivation</subject><subject>Leucine</subject><subject>Life Sciences</subject><subject>Lincomycin</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Molecular modelling</subject><subject>Phenylalanine</subject><subject>Proline</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Regulatory proteins</subject><subject>Spiramycin</subject><subject>Streptomyces</subject><subject>Transcription factors</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kl2L1TAQhoMo7vHoH_BCAl550TVfTdvLZfFjYUFw1-uQk05rljapSbprf4d_2NTuqgdEAgmTed4JM3kReknJKSWkehsJYSUvCCMFJbymxd0jtKOCs4JIKh6jHaFVWVRlU5-gZzHeEEJZLeVTdMJp0_CK0B36cR20iybYKVnv9IAD9POg1wD7Dms8wGysgyJAnLyL9hYeEB8WPAWfwDrc-YBbG8CkYcHGuxT8MFjX47wZPy65BD5YHxeXvkK0Eef4KgWY0pqEuHGDg_xCfI6edHqI8OL-3KMv799dn38sLj99uDg_uyxMSXkqaCVlS7XWQoiuBloaoqFpG2JkWR00I5WQJZO0bnhXtw1jFDpT60a0pK0OQPkevd7q5i6-zRCTuvFzyEOIinEpVoX4i-r1AMq6zqegzWijUWeSloLxJq89Ov0HlVcLo80Dgc7m-yPBmyPBOjT4nno9x6gurj4fs2xjTfAxBujUFOyow6IoUasV1GYFla2gfllB3WXRq_vu5sMI7W_Jw99ngG9AzCnXQ_jT_n_K_gTyY8HW</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Xu, Yurong</creator><creator>Tang, Yaqian</creator><creator>Wang, Nian</creator><creator>Liu, Jing</creator><creator>Cai, Xinlu</creator><creator>Cai, Hongyi</creator><creator>Li, Jie</creator><creator>Tan, Guoqing</creator><creator>Liu, Ruihua</creator><creator>Bai, Linquan</creator><creator>Zhang, Lixin</creator><creator>Wu, Hang</creator><creator>Zhang, Buchang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200301</creationdate><title>Transcriptional regulation of a leucine-responsive regulatory protein for directly controlling lincomycin biosynthesis in Streptomyces lincolnensis</title><author>Xu, Yurong ; Tang, Yaqian ; Wang, Nian ; Liu, Jing ; Cai, Xinlu ; Cai, Hongyi ; Li, Jie ; Tan, Guoqing ; Liu, Ruihua ; Bai, Linquan ; Zhang, Lixin ; Wu, Hang ; Zhang, Buchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-1766d1aaa444f8e15c0ae9d90c657ba207465261893f8d9221efc8a94d0d7be13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actinomycetes</topic><topic>Antibiotics</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Arginine</topic><topic>Binding sites</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Blood proteins</topic><topic>Clusters</topic><topic>Cysteine</topic><topic>Deactivation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Inactivation</topic><topic>Leucine</topic><topic>Life Sciences</topic><topic>Lincomycin</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Molecular modelling</topic><topic>Phenylalanine</topic><topic>Proline</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Regulatory proteins</topic><topic>Spiramycin</topic><topic>Streptomyces</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yurong</creatorcontrib><creatorcontrib>Tang, Yaqian</creatorcontrib><creatorcontrib>Wang, Nian</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Cai, Xinlu</creatorcontrib><creatorcontrib>Cai, Hongyi</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Tan, Guoqing</creatorcontrib><creatorcontrib>Liu, Ruihua</creatorcontrib><creatorcontrib>Bai, Linquan</creatorcontrib><creatorcontrib>Zhang, Lixin</creatorcontrib><creatorcontrib>Wu, Hang</creatorcontrib><creatorcontrib>Zhang, Buchang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yurong</au><au>Tang, Yaqian</au><au>Wang, Nian</au><au>Liu, Jing</au><au>Cai, Xinlu</au><au>Cai, Hongyi</au><au>Li, Jie</au><au>Tan, Guoqing</au><au>Liu, Ruihua</au><au>Bai, Linquan</au><au>Zhang, Lixin</au><au>Wu, Hang</au><au>Zhang, Buchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional regulation of a leucine-responsive regulatory protein for directly controlling lincomycin biosynthesis in Streptomyces lincolnensis</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>104</volume><issue>6</issue><spage>2575</spage><epage>2587</epage><pages>2575-2587</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Leucine-responsive regulatory proteins (Lrps) are a family of transcription factors involved in diverse biological processes in bacteria. So far, molecular mechanism of Lrps for regulating antibiotics biosynthesis in actinomycetes remains largely unexplored. This study, for the first time in Streptomyces lincolnensis , identified an Lrp (named as SLCG_Lrp) associated with lincomycin production. SLCG_Lrp was validated to be a positive regulator for lincomycin biosynthesis by directly stimulating transcription of two structural genes ( lmbA and lmbV ), three resistance genes ( lmrA , lmrB and lmrC ), and a regulatory gene ( lmbU ) within the lincomycin biosynthetic gene ( lin ) cluster. SLCG_Lrp was transcriptionally self-inhibited and triggered the expression of its adjacent gene SLCG_3127 encoding a LysE superfamily protein. Further, the binding site of SLCG_Lrp in the intergenic region of SLCG_3127 and SLCG_Lrp was precisely identified. Inactivation of SLCG_3127 in S. lincolnensis resulted in yield improvement of lincomycin, which was caused by intracellular accumulation of proline and cysteine. Arginine and phenylalanine were identified as specific regulatory ligands, respectively, to reduce and promote DNA-binding affinity of SLCG_Lrp. We further found that SLCG_Lrp was directly repressed by SLCG_2919, the first identified transcription factor outside lin cluster for lincomycin production. Therefore, our findings revealed SLCG_Lrp-mediated transcriptional regulation of lincomycin biosynthesis. This study extends the understanding of molecular mechanisms underlying lincomycin biosynthetic regulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31993701</pmid><doi>10.1007/s00253-020-10381-w</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2020-03, Vol.104 (6), p.2575-2587
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_journals_2364922141
source Springer Nature - Complete Springer Journals
subjects Actinomycetes
Antibiotics
Applied Genetics and Molecular Biotechnology
Arginine
Binding sites
Biological activity
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Blood proteins
Clusters
Cysteine
Deactivation
Deoxyribonucleic acid
DNA
DNA binding proteins
Ethylenediaminetetraacetic acid
Gene expression
Gene regulation
Genes
Genetic aspects
Genetic transcription
Inactivation
Leucine
Life Sciences
Lincomycin
Microbial Genetics and Genomics
Microbiology
Molecular modelling
Phenylalanine
Proline
Protein binding
Proteins
Regulatory proteins
Spiramycin
Streptomyces
Transcription factors
title Transcriptional regulation of a leucine-responsive regulatory protein for directly controlling lincomycin biosynthesis in Streptomyces lincolnensis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20regulation%20of%20a%20leucine-responsive%20regulatory%20protein%20for%20directly%20controlling%20lincomycin%20biosynthesis%20in%20Streptomyces%20lincolnensis&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Xu,%20Yurong&rft.date=2020-03-01&rft.volume=104&rft.issue=6&rft.spage=2575&rft.epage=2587&rft.pages=2575-2587&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10381-w&rft_dat=%3Cgale_proqu%3EA615423939%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2364922141&rft_id=info:pmid/31993701&rft_galeid=A615423939&rfr_iscdi=true