Domain alignment within ferroelectric/dielectric PbTiO\(_3\)/SrTiO\(_3\) superlattice nanostructures

The ferroelectric domain pattern within lithographically defined PbTiO3/SrTiO3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron x-ray nanobeam diffraction reveals that the spontaneously formed 180{\deg} ferroelect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Park, J, Mangeri, J, Zhang, Q, Yusuf, M H, Pateras, A, Dawber, M, Holt, M V, Heinonen, O G, Nakhmanson, S, Evans, P G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Park, J
Mangeri, J
Zhang, Q
Yusuf, M H
Pateras, A
Dawber, M
Holt, M V
Heinonen, O G
Nakhmanson, S
Evans, P G
description The ferroelectric domain pattern within lithographically defined PbTiO3/SrTiO3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron x-ray nanobeam diffraction reveals that the spontaneously formed 180{\deg} ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of x-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20{\deg} with respect to the edges. Computational studies based on a time-dependent Landau-Ginzburg-Devonshire model show that the preferred direction of the alignment results from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.
doi_str_mv 10.48550/arxiv.2002.11073
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2364781872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364781872</sourcerecordid><originalsourceid>FETCH-proquest_journals_23647818723</originalsourceid><addsrcrecordid>eNqNis0OATEYRRuJhOAB7JrYsDDTnxkzez-xI2EpmdT4UBktX1s8vllgbXVP7jmE9DmLkjxNWazwpR-RYExEnLNMNkhbSMnHeSJEi_Scu7DaTTKRprJNDjN7VdpQVemTuYLx9Kn9uT6OgGihgtKjLuOD_iJd77d6tRsWcjeKN_hj6sINsFLe6xKoUcY6j6H0AcF1SfOoKge9z3bIYDHfTpfjG9p7AOeLiw1oalUIOUmynOeZkP9Vb9HtTJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364781872</pqid></control><display><type>article</type><title>Domain alignment within ferroelectric/dielectric PbTiO\(_3\)/SrTiO\(_3\) superlattice nanostructures</title><source>Freely Accessible Journals</source><creator>Park, J ; Mangeri, J ; Zhang, Q ; Yusuf, M H ; Pateras, A ; Dawber, M ; Holt, M V ; Heinonen, O G ; Nakhmanson, S ; Evans, P G</creator><creatorcontrib>Park, J ; Mangeri, J ; Zhang, Q ; Yusuf, M H ; Pateras, A ; Dawber, M ; Holt, M V ; Heinonen, O G ; Nakhmanson, S ; Evans, P G</creatorcontrib><description>The ferroelectric domain pattern within lithographically defined PbTiO3/SrTiO3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron x-ray nanobeam diffraction reveals that the spontaneously formed 180{\deg} ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of x-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20{\deg} with respect to the edges. Computational studies based on a time-dependent Landau-Ginzburg-Devonshire model show that the preferred direction of the alignment results from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2002.11073</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Angular distribution ; Dielectric strength ; Domain walls ; Electrostriction ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; Free energy ; Lead titanates ; Nanostructure ; Patterning ; Strontium titanates ; Superlattices ; Synchrotron radiation ; Time dependence</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786,27932</link.rule.ids></links><search><creatorcontrib>Park, J</creatorcontrib><creatorcontrib>Mangeri, J</creatorcontrib><creatorcontrib>Zhang, Q</creatorcontrib><creatorcontrib>Yusuf, M H</creatorcontrib><creatorcontrib>Pateras, A</creatorcontrib><creatorcontrib>Dawber, M</creatorcontrib><creatorcontrib>Holt, M V</creatorcontrib><creatorcontrib>Heinonen, O G</creatorcontrib><creatorcontrib>Nakhmanson, S</creatorcontrib><creatorcontrib>Evans, P G</creatorcontrib><title>Domain alignment within ferroelectric/dielectric PbTiO\(_3\)/SrTiO\(_3\) superlattice nanostructures</title><title>arXiv.org</title><description>The ferroelectric domain pattern within lithographically defined PbTiO3/SrTiO3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron x-ray nanobeam diffraction reveals that the spontaneously formed 180{\deg} ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of x-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20{\deg} with respect to the edges. Computational studies based on a time-dependent Landau-Ginzburg-Devonshire model show that the preferred direction of the alignment results from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.</description><subject>Alignment</subject><subject>Angular distribution</subject><subject>Dielectric strength</subject><subject>Domain walls</subject><subject>Electrostriction</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Free energy</subject><subject>Lead titanates</subject><subject>Nanostructure</subject><subject>Patterning</subject><subject>Strontium titanates</subject><subject>Superlattices</subject><subject>Synchrotron radiation</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNis0OATEYRRuJhOAB7JrYsDDTnxkzez-xI2EpmdT4UBktX1s8vllgbXVP7jmE9DmLkjxNWazwpR-RYExEnLNMNkhbSMnHeSJEi_Scu7DaTTKRprJNDjN7VdpQVemTuYLx9Kn9uT6OgGihgtKjLuOD_iJd77d6tRsWcjeKN_hj6sINsFLe6xKoUcY6j6H0AcF1SfOoKge9z3bIYDHfTpfjG9p7AOeLiw1oalUIOUmynOeZkP9Vb9HtTJ8</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Park, J</creator><creator>Mangeri, J</creator><creator>Zhang, Q</creator><creator>Yusuf, M H</creator><creator>Pateras, A</creator><creator>Dawber, M</creator><creator>Holt, M V</creator><creator>Heinonen, O G</creator><creator>Nakhmanson, S</creator><creator>Evans, P G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200225</creationdate><title>Domain alignment within ferroelectric/dielectric PbTiO\(_3\)/SrTiO\(_3\) superlattice nanostructures</title><author>Park, J ; Mangeri, J ; Zhang, Q ; Yusuf, M H ; Pateras, A ; Dawber, M ; Holt, M V ; Heinonen, O G ; Nakhmanson, S ; Evans, P G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23647818723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alignment</topic><topic>Angular distribution</topic><topic>Dielectric strength</topic><topic>Domain walls</topic><topic>Electrostriction</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Free energy</topic><topic>Lead titanates</topic><topic>Nanostructure</topic><topic>Patterning</topic><topic>Strontium titanates</topic><topic>Superlattices</topic><topic>Synchrotron radiation</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, J</creatorcontrib><creatorcontrib>Mangeri, J</creatorcontrib><creatorcontrib>Zhang, Q</creatorcontrib><creatorcontrib>Yusuf, M H</creatorcontrib><creatorcontrib>Pateras, A</creatorcontrib><creatorcontrib>Dawber, M</creatorcontrib><creatorcontrib>Holt, M V</creatorcontrib><creatorcontrib>Heinonen, O G</creatorcontrib><creatorcontrib>Nakhmanson, S</creatorcontrib><creatorcontrib>Evans, P G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, J</au><au>Mangeri, J</au><au>Zhang, Q</au><au>Yusuf, M H</au><au>Pateras, A</au><au>Dawber, M</au><au>Holt, M V</au><au>Heinonen, O G</au><au>Nakhmanson, S</au><au>Evans, P G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Domain alignment within ferroelectric/dielectric PbTiO\(_3\)/SrTiO\(_3\) superlattice nanostructures</atitle><jtitle>arXiv.org</jtitle><date>2020-02-25</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The ferroelectric domain pattern within lithographically defined PbTiO3/SrTiO3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron x-ray nanobeam diffraction reveals that the spontaneously formed 180{\deg} ferroelectric stripe domains exhibited by such superlattices adopt a configuration in rectangular nanostructures in which domain walls are aligned with long patterned edges. The angular distribution of x-ray diffuse scattering intensity from nanodomains indicates that domains are aligned within an angular range of approximately 20{\deg} with respect to the edges. Computational studies based on a time-dependent Landau-Ginzburg-Devonshire model show that the preferred direction of the alignment results from lowering of the bulk and electrostrictive contributions to the free energy of the system due to the release of the lateral mechanical constraint. This unexpected alignment appears to be intrinsic and not a result of distortions or defects caused by the patterning process. Our work demonstrates how nanostructuring and patterning of heteroepitaxial superlattices allow for pathways to create and control ferroelectric structures that may appear counterintuitive.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2002.11073</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2364781872
source Freely Accessible Journals
subjects Alignment
Angular distribution
Dielectric strength
Domain walls
Electrostriction
Ferroelectric domains
Ferroelectric materials
Ferroelectricity
Free energy
Lead titanates
Nanostructure
Patterning
Strontium titanates
Superlattices
Synchrotron radiation
Time dependence
title Domain alignment within ferroelectric/dielectric PbTiO\(_3\)/SrTiO\(_3\) superlattice nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Domain%20alignment%20within%20ferroelectric/dielectric%20PbTiO%5C(_3%5C)/SrTiO%5C(_3%5C)%20superlattice%20nanostructures&rft.jtitle=arXiv.org&rft.au=Park,%20J&rft.date=2020-02-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2002.11073&rft_dat=%3Cproquest%3E2364781872%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2364781872&rft_id=info:pmid/&rfr_iscdi=true