Decaying turbulence in a stratified fluid of high Prandtl number
Decaying turbulence in a density-stratified fluid with a Prandtl number up to $Pr=70$ is investigated by direct numerical simulation. In turbulent flow with a Prandtl number larger than unity, it is well known that the passive scalar fluctuations cascade to scales smaller than the Kolmogorov scale,...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-09, Vol.874, p.821-855 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 855 |
---|---|
container_issue | |
container_start_page | 821 |
container_title | Journal of fluid mechanics |
container_volume | 874 |
creator | Okino, Shinya Hanazaki, Hideshi |
description | Decaying turbulence in a density-stratified fluid with a Prandtl number up to
$Pr=70$
is investigated by direct numerical simulation. In turbulent flow with a Prandtl number larger than unity, it is well known that the passive scalar fluctuations cascade to scales smaller than the Kolmogorov scale, and show the
$k^{-1}$
spectrum in the viscous–convective range, down to the Batchelor scale. In decaying stratified turbulence, the same phenomenon is initially observed for the buoyant scalar of high
$Pr~(=70)$
, until the Ozmidov scale becomes small and the buoyancy becomes effective even at the Kolmogorov scale. After that moment, however, the velocity components near the Kolmogorov scale begin to show strong anisotropy dominated by the vertically sheared horizontal flow, which reduces the vertical scale of density fluctuations. An analysis similar to that of Batchelor (
J. Fluid Mech.
, vol. 5, 1959, pp. 113–133) indeed shows that the vertically sheared horizontal flow reduces the vertical scale of density fluctuations, without changing the horizontal scale. |
doi_str_mv | 10.1017/jfm.2019.471 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2364238926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2364238926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-4ba643ba6c5302f57ea3d4e9ae378891fa8876b185e95b24cacd95415aff06203</originalsourceid><addsrcrecordid>eNotkDtPwzAYRS0EEqWw8QMssZLgz894A5WnVAkGmC3HsVtHaVLsZOi_J1VZ7l2O7pUOQrdASiCgHtqwKykBXXIFZ2gBXOpCSS7O0YIQSgsASi7RVc4tIcCIVgv0-OydPcR-g8cp1VPne-dx7LHFeUx2jCH6Boduig0eAt7GzRZ_Jds3Y4f7aVf7dI0ugu2yv_nvJfp5fflevRfrz7eP1dO6cIzqseC1lZzN4QQjNAjlLWu419YzVVUagq0qJWuohNeiptxZ12jBQdgQiKSELdHdaXefht_J59G0w5T6-dJQJjlllaZypu5PlEtDzskHs09xZ9PBADFHR2Z2ZI6OzOyI_QFr5Vj9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364238926</pqid></control><display><type>article</type><title>Decaying turbulence in a stratified fluid of high Prandtl number</title><source>Cambridge Journals Online</source><creator>Okino, Shinya ; Hanazaki, Hideshi</creator><creatorcontrib>Okino, Shinya ; Hanazaki, Hideshi</creatorcontrib><description>Decaying turbulence in a density-stratified fluid with a Prandtl number up to
$Pr=70$
is investigated by direct numerical simulation. In turbulent flow with a Prandtl number larger than unity, it is well known that the passive scalar fluctuations cascade to scales smaller than the Kolmogorov scale, and show the
$k^{-1}$
spectrum in the viscous–convective range, down to the Batchelor scale. In decaying stratified turbulence, the same phenomenon is initially observed for the buoyant scalar of high
$Pr~(=70)$
, until the Ozmidov scale becomes small and the buoyancy becomes effective even at the Kolmogorov scale. After that moment, however, the velocity components near the Kolmogorov scale begin to show strong anisotropy dominated by the vertically sheared horizontal flow, which reduces the vertical scale of density fluctuations. An analysis similar to that of Batchelor (
J. Fluid Mech.
, vol. 5, 1959, pp. 113–133) indeed shows that the vertically sheared horizontal flow reduces the vertical scale of density fluctuations, without changing the horizontal scale.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.471</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Advection ; Anisotropy ; Computational fluid dynamics ; Computer simulation ; Decay ; Density ; Direct numerical simulation ; Energy ; Experiments ; Fluctuations ; Fluid flow ; Fluid mechanics ; Fluids ; Mathematical models ; Numerical analysis ; Ocean circulation ; Prandtl number ; Reynolds number ; Turbulence ; Turbulent flow ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2019-09, Vol.874, p.821-855</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-4ba643ba6c5302f57ea3d4e9ae378891fa8876b185e95b24cacd95415aff06203</citedby><cites>FETCH-LOGICAL-c329t-4ba643ba6c5302f57ea3d4e9ae378891fa8876b185e95b24cacd95415aff06203</cites><orcidid>0000-0002-0306-1971 ; 0000-0002-8371-3641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Okino, Shinya</creatorcontrib><creatorcontrib>Hanazaki, Hideshi</creatorcontrib><title>Decaying turbulence in a stratified fluid of high Prandtl number</title><title>Journal of fluid mechanics</title><description>Decaying turbulence in a density-stratified fluid with a Prandtl number up to
$Pr=70$
is investigated by direct numerical simulation. In turbulent flow with a Prandtl number larger than unity, it is well known that the passive scalar fluctuations cascade to scales smaller than the Kolmogorov scale, and show the
$k^{-1}$
spectrum in the viscous–convective range, down to the Batchelor scale. In decaying stratified turbulence, the same phenomenon is initially observed for the buoyant scalar of high
$Pr~(=70)$
, until the Ozmidov scale becomes small and the buoyancy becomes effective even at the Kolmogorov scale. After that moment, however, the velocity components near the Kolmogorov scale begin to show strong anisotropy dominated by the vertically sheared horizontal flow, which reduces the vertical scale of density fluctuations. An analysis similar to that of Batchelor (
J. Fluid Mech.
, vol. 5, 1959, pp. 113–133) indeed shows that the vertically sheared horizontal flow reduces the vertical scale of density fluctuations, without changing the horizontal scale.</description><subject>Advection</subject><subject>Anisotropy</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Decay</subject><subject>Density</subject><subject>Direct numerical simulation</subject><subject>Energy</subject><subject>Experiments</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Ocean circulation</subject><subject>Prandtl number</subject><subject>Reynolds number</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkDtPwzAYRS0EEqWw8QMssZLgz894A5WnVAkGmC3HsVtHaVLsZOi_J1VZ7l2O7pUOQrdASiCgHtqwKykBXXIFZ2gBXOpCSS7O0YIQSgsASi7RVc4tIcCIVgv0-OydPcR-g8cp1VPne-dx7LHFeUx2jCH6Boduig0eAt7GzRZ_Jds3Y4f7aVf7dI0ugu2yv_nvJfp5fflevRfrz7eP1dO6cIzqseC1lZzN4QQjNAjlLWu419YzVVUagq0qJWuohNeiptxZ12jBQdgQiKSELdHdaXefht_J59G0w5T6-dJQJjlllaZypu5PlEtDzskHs09xZ9PBADFHR2Z2ZI6OzOyI_QFr5Vj9</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Okino, Shinya</creator><creator>Hanazaki, Hideshi</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0306-1971</orcidid><orcidid>https://orcid.org/0000-0002-8371-3641</orcidid></search><sort><creationdate>20190910</creationdate><title>Decaying turbulence in a stratified fluid of high Prandtl number</title><author>Okino, Shinya ; Hanazaki, Hideshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-4ba643ba6c5302f57ea3d4e9ae378891fa8876b185e95b24cacd95415aff06203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advection</topic><topic>Anisotropy</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Decay</topic><topic>Density</topic><topic>Direct numerical simulation</topic><topic>Energy</topic><topic>Experiments</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Ocean circulation</topic><topic>Prandtl number</topic><topic>Reynolds number</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okino, Shinya</creatorcontrib><creatorcontrib>Hanazaki, Hideshi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okino, Shinya</au><au>Hanazaki, Hideshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decaying turbulence in a stratified fluid of high Prandtl number</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2019-09-10</date><risdate>2019</risdate><volume>874</volume><spage>821</spage><epage>855</epage><pages>821-855</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Decaying turbulence in a density-stratified fluid with a Prandtl number up to
$Pr=70$
is investigated by direct numerical simulation. In turbulent flow with a Prandtl number larger than unity, it is well known that the passive scalar fluctuations cascade to scales smaller than the Kolmogorov scale, and show the
$k^{-1}$
spectrum in the viscous–convective range, down to the Batchelor scale. In decaying stratified turbulence, the same phenomenon is initially observed for the buoyant scalar of high
$Pr~(=70)$
, until the Ozmidov scale becomes small and the buoyancy becomes effective even at the Kolmogorov scale. After that moment, however, the velocity components near the Kolmogorov scale begin to show strong anisotropy dominated by the vertically sheared horizontal flow, which reduces the vertical scale of density fluctuations. An analysis similar to that of Batchelor (
J. Fluid Mech.
, vol. 5, 1959, pp. 113–133) indeed shows that the vertically sheared horizontal flow reduces the vertical scale of density fluctuations, without changing the horizontal scale.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.471</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-0306-1971</orcidid><orcidid>https://orcid.org/0000-0002-8371-3641</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-09, Vol.874, p.821-855 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2364238926 |
source | Cambridge Journals Online |
subjects | Advection Anisotropy Computational fluid dynamics Computer simulation Decay Density Direct numerical simulation Energy Experiments Fluctuations Fluid flow Fluid mechanics Fluids Mathematical models Numerical analysis Ocean circulation Prandtl number Reynolds number Turbulence Turbulent flow Viscosity |
title | Decaying turbulence in a stratified fluid of high Prandtl number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decaying%20turbulence%20in%20a%20stratified%20fluid%20of%20high%20Prandtl%20number&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Okino,%20Shinya&rft.date=2019-09-10&rft.volume=874&rft.spage=821&rft.epage=855&rft.pages=821-855&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.471&rft_dat=%3Cproquest_cross%3E2364238926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2364238926&rft_id=info:pmid/&rfr_iscdi=true |