Estimation and inference in mixed effect regression models using shape constraints, with application to tree height estimation
Estimation of tree height given diameter is an important part of the forest inventory analysis of the US Forest Service. Existing methods use parametric models to estimate the curve. We propose a semiparametric model in which log(height) is a smooth, increasing and concave function of diameter, with...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society Series C: Applied Statistics 2020-04, Vol.69 (2), p.353-375 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 2 |
container_start_page | 353 |
container_title | Journal of the Royal Statistical Society Series C: Applied Statistics |
container_volume | 69 |
creator | Liao, Xiyue Meyer, Mary C. |
description | Estimation of tree height given diameter is an important part of the forest inventory analysis of the US Forest Service. Existing methods use parametric models to estimate the curve. We propose a semiparametric model in which log(height) is a smooth, increasing and concave function of diameter, with a random-plot component and fixed effect covariates. Large sample properties and inference methods that work well in practice are derived. Proposed inference methods use approximate normal distributions for the fixed effects and a likelihood ratio test for the significance of the random effect. A closed form approximate prediction method is provided and overall it outperformed competitors for both a simulation and a real data application. The methods are implemented by the cgamm routine in the R package cgam and can be used for a wide range of mixed model applications. |
doi_str_mv | 10.1111/rssc.12388 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2363984453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26966108</jstor_id><sourcerecordid>26966108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3238-cefbbf41e42d42317229e6a0ec953a76348e4c339690a460fa363b9f4eb6d0043</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwsCNZYkOk2LHjxCOqyodUCYnCHLnOuXHVJsF2Vbrwt-MS6Mgtd8Pv3bt7CF1SMqKx7pz3ekRTVhRHaEC5yBNZ5OIYDQhhWSLTjJ-iM--XJBYlfIC-Jj7YtQq2bbBqKmwbAw4aDXHCa_sJFQZjQAfsYOHA-z24bitYebzxtllgX6sOsG4bH5yyTfC3eGtDjVXXrazuN4cWBweAa7CLOmA4eJ6jE6NWHi5--xC9P0zexk_J9OXxeXw_TTSLzyQazHxuOAWeVjxlNE9TCUIR0DJjKheMF8A1Y1JIorggRjHB5tJwmIuKEM6G6Lrf27n2YxP9y2W7cU20LNOIyoLzjEXqpqe0a713YMrOxUPdrqSk3Odb7vMtf_KNMO3hrV3B7h-yfJ3Nxn-aq16z9KF1B00qpBCUFOwb4MKJjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363984453</pqid></control><display><type>article</type><title>Estimation and inference in mixed effect regression models using shape constraints, with application to tree height estimation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Liao, Xiyue ; Meyer, Mary C.</creator><creatorcontrib>Liao, Xiyue ; Meyer, Mary C.</creatorcontrib><description>Estimation of tree height given diameter is an important part of the forest inventory analysis of the US Forest Service. Existing methods use parametric models to estimate the curve. We propose a semiparametric model in which log(height) is a smooth, increasing and concave function of diameter, with a random-plot component and fixed effect covariates. Large sample properties and inference methods that work well in practice are derived. Proposed inference methods use approximate normal distributions for the fixed effects and a likelihood ratio test for the significance of the random effect. A closed form approximate prediction method is provided and overall it outperformed competitors for both a simulation and a real data application. The methods are implemented by the cgamm routine in the R package cgam and can be used for a wide range of mixed model applications.</description><identifier>ISSN: 0035-9254</identifier><identifier>EISSN: 1467-9876</identifier><identifier>DOI: 10.1111/rssc.12388</identifier><language>eng</language><publisher>Oxford: Wiley</publisher><subject>Application ; Approximation ; Competitors ; Computer simulation ; Confidence interval ; Constraint modelling ; Convergence rate ; Hypothesis test ; Inference ; Likelihood ratio ; Mixed effects model ; Original Articles ; Regression analysis ; Regression models ; Shape constraint ; Shape effects ; Simulation ; Spline estimator</subject><ispartof>Journal of the Royal Statistical Society Series C: Applied Statistics, 2020-04, Vol.69 (2), p.353-375</ispartof><rights>2019 Royal Statistical Society</rights><rights>Copyright © 2020 The Royal Statistical Society and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3238-cefbbf41e42d42317229e6a0ec953a76348e4c339690a460fa363b9f4eb6d0043</citedby><cites>FETCH-LOGICAL-c3238-cefbbf41e42d42317229e6a0ec953a76348e4c339690a460fa363b9f4eb6d0043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frssc.12388$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frssc.12388$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Liao, Xiyue</creatorcontrib><creatorcontrib>Meyer, Mary C.</creatorcontrib><title>Estimation and inference in mixed effect regression models using shape constraints, with application to tree height estimation</title><title>Journal of the Royal Statistical Society Series C: Applied Statistics</title><description>Estimation of tree height given diameter is an important part of the forest inventory analysis of the US Forest Service. Existing methods use parametric models to estimate the curve. We propose a semiparametric model in which log(height) is a smooth, increasing and concave function of diameter, with a random-plot component and fixed effect covariates. Large sample properties and inference methods that work well in practice are derived. Proposed inference methods use approximate normal distributions for the fixed effects and a likelihood ratio test for the significance of the random effect. A closed form approximate prediction method is provided and overall it outperformed competitors for both a simulation and a real data application. The methods are implemented by the cgamm routine in the R package cgam and can be used for a wide range of mixed model applications.</description><subject>Application</subject><subject>Approximation</subject><subject>Competitors</subject><subject>Computer simulation</subject><subject>Confidence interval</subject><subject>Constraint modelling</subject><subject>Convergence rate</subject><subject>Hypothesis test</subject><subject>Inference</subject><subject>Likelihood ratio</subject><subject>Mixed effects model</subject><subject>Original Articles</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Shape constraint</subject><subject>Shape effects</subject><subject>Simulation</subject><subject>Spline estimator</subject><issn>0035-9254</issn><issn>1467-9876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1PwzAQxS0EEqWwsCNZYkOk2LHjxCOqyodUCYnCHLnOuXHVJsF2Vbrwt-MS6Mgtd8Pv3bt7CF1SMqKx7pz3ekRTVhRHaEC5yBNZ5OIYDQhhWSLTjJ-iM--XJBYlfIC-Jj7YtQq2bbBqKmwbAw4aDXHCa_sJFQZjQAfsYOHA-z24bitYebzxtllgX6sOsG4bH5yyTfC3eGtDjVXXrazuN4cWBweAa7CLOmA4eJ6jE6NWHi5--xC9P0zexk_J9OXxeXw_TTSLzyQazHxuOAWeVjxlNE9TCUIR0DJjKheMF8A1Y1JIorggRjHB5tJwmIuKEM6G6Lrf27n2YxP9y2W7cU20LNOIyoLzjEXqpqe0a713YMrOxUPdrqSk3Odb7vMtf_KNMO3hrV3B7h-yfJ3Nxn-aq16z9KF1B00qpBCUFOwb4MKJjg</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Liao, Xiyue</creator><creator>Meyer, Mary C.</creator><general>Wiley</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202004</creationdate><title>Estimation and inference in mixed effect regression models using shape constraints, with application to tree height estimation</title><author>Liao, Xiyue ; Meyer, Mary C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3238-cefbbf41e42d42317229e6a0ec953a76348e4c339690a460fa363b9f4eb6d0043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Application</topic><topic>Approximation</topic><topic>Competitors</topic><topic>Computer simulation</topic><topic>Confidence interval</topic><topic>Constraint modelling</topic><topic>Convergence rate</topic><topic>Hypothesis test</topic><topic>Inference</topic><topic>Likelihood ratio</topic><topic>Mixed effects model</topic><topic>Original Articles</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Shape constraint</topic><topic>Shape effects</topic><topic>Simulation</topic><topic>Spline estimator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Xiyue</creatorcontrib><creatorcontrib>Meyer, Mary C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Xiyue</au><au>Meyer, Mary C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation and inference in mixed effect regression models using shape constraints, with application to tree height estimation</atitle><jtitle>Journal of the Royal Statistical Society Series C: Applied Statistics</jtitle><date>2020-04</date><risdate>2020</risdate><volume>69</volume><issue>2</issue><spage>353</spage><epage>375</epage><pages>353-375</pages><issn>0035-9254</issn><eissn>1467-9876</eissn><abstract>Estimation of tree height given diameter is an important part of the forest inventory analysis of the US Forest Service. Existing methods use parametric models to estimate the curve. We propose a semiparametric model in which log(height) is a smooth, increasing and concave function of diameter, with a random-plot component and fixed effect covariates. Large sample properties and inference methods that work well in practice are derived. Proposed inference methods use approximate normal distributions for the fixed effects and a likelihood ratio test for the significance of the random effect. A closed form approximate prediction method is provided and overall it outperformed competitors for both a simulation and a real data application. The methods are implemented by the cgamm routine in the R package cgam and can be used for a wide range of mixed model applications.</abstract><cop>Oxford</cop><pub>Wiley</pub><doi>10.1111/rssc.12388</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9254 |
ispartof | Journal of the Royal Statistical Society Series C: Applied Statistics, 2020-04, Vol.69 (2), p.353-375 |
issn | 0035-9254 1467-9876 |
language | eng |
recordid | cdi_proquest_journals_2363984453 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete; Oxford University Press Journals All Titles (1996-Current) |
subjects | Application Approximation Competitors Computer simulation Confidence interval Constraint modelling Convergence rate Hypothesis test Inference Likelihood ratio Mixed effects model Original Articles Regression analysis Regression models Shape constraint Shape effects Simulation Spline estimator |
title | Estimation and inference in mixed effect regression models using shape constraints, with application to tree height estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20and%20inference%20in%20mixed%20effect%20regression%20models%20using%20shape%20constraints,%20with%20application%20to%20tree%20height%20estimation&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society%20Series%20C:%20Applied%20Statistics&rft.au=Liao,%20Xiyue&rft.date=2020-04&rft.volume=69&rft.issue=2&rft.spage=353&rft.epage=375&rft.pages=353-375&rft.issn=0035-9254&rft.eissn=1467-9876&rft_id=info:doi/10.1111/rssc.12388&rft_dat=%3Cjstor_proqu%3E26966108%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363984453&rft_id=info:pmid/&rft_jstor_id=26966108&rfr_iscdi=true |