A nonlinear well-determined model for power system observability using Interior-Point methods
•Interior-Point method is used to solve the optimal phasor measurement unit placement problem.•Placement method can consider any number, type, and position, of pre-existing measurement.•Proposed method delivers the optimal solution in polynomial time, even for large systems. This paper proposes Inte...
Gespeichert in:
Veröffentlicht in: | Measurement : journal of the International Measurement Confederation 2020-02, Vol.152, p.107305, Article 107305 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107305 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 152 |
creator | Theodorakatos, Nikolaos P. |
description | •Interior-Point method is used to solve the optimal phasor measurement unit placement problem.•Placement method can consider any number, type, and position, of pre-existing measurement.•Proposed method delivers the optimal solution in polynomial time, even for large systems.
This paper proposes Interior-Point (IP) methods for the solution of the optimal placement of phasor measurement units (PMUs) ensuring complete observability. The optimization problem consists of a quadratic function under a well-determined system of constraints that is, nonlinear equations equal to the number of the design variables defined over the whole search space Rn. A hybrid-optimization technique coupling a branch-and-bound and a local search-procedure based on the (IP) methods is used in solving the model. The (IP) methods detect solution points that yield a minimum objective value as the one obtained by branch-and-bound algorithm. The (IP) methods optimizes the required PMU numbers whereas practical constraints as well as contingency issues as single PMU failure, costs of communication infrastructure (CI) from Phasor Data Concentrator to PMUs and prohibitive installations are satisfied. A large-scale system is also analysed to exhibit the applicability of (IP) methods to practical power system cases. |
doi_str_mv | 10.1016/j.measurement.2019.107305 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2363908642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224119311698</els_id><sourcerecordid>2363908642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ca75e08b569dd16f1507923d6d60da3eaab1f56ec5206251be35835f5b9685603</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOI7-h4jrjnk0abscBh8DA7pQcCMhbW41pU3GJDPD_HsrdeHS1YXDOedyPoSuKVlQQuVttxhAx12AAVxaMEKrUS84ESdoRsuCZzllb6doRpjkGWM5PUcXMXaEEMkrOUPvS-y8660DHfAB-j4zkCAMo2Dw4A30uPUBb_0BAo7HmGDAvo4Q9rq2vU1HvIvWfeC1G1PWh-zZW5fwAOnTm3iJzlrdR7j6vXP0en_3snrMNk8P69VykzU8r1LW6EIAKWshK2OobKkgRcW4kUYSozloXdNWSGgEI5IJWgMXJRetqCtZCkn4HN1Mvdvgv3YQk-r8LrjxpWJ8HEpKmbPRVU2uJvgYA7RqG-ygw1FRon5oqk79oal-aKqJ5phdTVkYZ-wtBBUbC64BYwM0SRlv_9HyDTnGhUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363908642</pqid></control><display><type>article</type><title>A nonlinear well-determined model for power system observability using Interior-Point methods</title><source>Elsevier ScienceDirect Journals</source><creator>Theodorakatos, Nikolaos P.</creator><creatorcontrib>Theodorakatos, Nikolaos P.</creatorcontrib><description>•Interior-Point method is used to solve the optimal phasor measurement unit placement problem.•Placement method can consider any number, type, and position, of pre-existing measurement.•Proposed method delivers the optimal solution in polynomial time, even for large systems.
This paper proposes Interior-Point (IP) methods for the solution of the optimal placement of phasor measurement units (PMUs) ensuring complete observability. The optimization problem consists of a quadratic function under a well-determined system of constraints that is, nonlinear equations equal to the number of the design variables defined over the whole search space Rn. A hybrid-optimization technique coupling a branch-and-bound and a local search-procedure based on the (IP) methods is used in solving the model. The (IP) methods detect solution points that yield a minimum objective value as the one obtained by branch-and-bound algorithm. The (IP) methods optimizes the required PMU numbers whereas practical constraints as well as contingency issues as single PMU failure, costs of communication infrastructure (CI) from Phasor Data Concentrator to PMUs and prohibitive installations are satisfied. A large-scale system is also analysed to exhibit the applicability of (IP) methods to practical power system cases.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2019.107305</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Algorithms ; Branch-and-bound (BB) algorithm ; Concentrators ; Contingency ; Interior-Point (IP) method ; Measuring instruments ; Nonlinear equations ; Nonlinear systems ; Numerical analysis ; Observability ; Optimal placement ; Optimization ; Phasor measurement unit ; Quadratic equations ; Well-determined nonlinear systems</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2020-02, Vol.152, p.107305, Article 107305</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ca75e08b569dd16f1507923d6d60da3eaab1f56ec5206251be35835f5b9685603</citedby><cites>FETCH-LOGICAL-c349t-ca75e08b569dd16f1507923d6d60da3eaab1f56ec5206251be35835f5b9685603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224119311698$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Theodorakatos, Nikolaos P.</creatorcontrib><title>A nonlinear well-determined model for power system observability using Interior-Point methods</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Interior-Point method is used to solve the optimal phasor measurement unit placement problem.•Placement method can consider any number, type, and position, of pre-existing measurement.•Proposed method delivers the optimal solution in polynomial time, even for large systems.
This paper proposes Interior-Point (IP) methods for the solution of the optimal placement of phasor measurement units (PMUs) ensuring complete observability. The optimization problem consists of a quadratic function under a well-determined system of constraints that is, nonlinear equations equal to the number of the design variables defined over the whole search space Rn. A hybrid-optimization technique coupling a branch-and-bound and a local search-procedure based on the (IP) methods is used in solving the model. The (IP) methods detect solution points that yield a minimum objective value as the one obtained by branch-and-bound algorithm. The (IP) methods optimizes the required PMU numbers whereas practical constraints as well as contingency issues as single PMU failure, costs of communication infrastructure (CI) from Phasor Data Concentrator to PMUs and prohibitive installations are satisfied. A large-scale system is also analysed to exhibit the applicability of (IP) methods to practical power system cases.</description><subject>Algorithms</subject><subject>Branch-and-bound (BB) algorithm</subject><subject>Concentrators</subject><subject>Contingency</subject><subject>Interior-Point (IP) method</subject><subject>Measuring instruments</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Numerical analysis</subject><subject>Observability</subject><subject>Optimal placement</subject><subject>Optimization</subject><subject>Phasor measurement unit</subject><subject>Quadratic equations</subject><subject>Well-determined nonlinear systems</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMoOI7-h4jrjnk0abscBh8DA7pQcCMhbW41pU3GJDPD_HsrdeHS1YXDOedyPoSuKVlQQuVttxhAx12AAVxaMEKrUS84ESdoRsuCZzllb6doRpjkGWM5PUcXMXaEEMkrOUPvS-y8660DHfAB-j4zkCAMo2Dw4A30uPUBb_0BAo7HmGDAvo4Q9rq2vU1HvIvWfeC1G1PWh-zZW5fwAOnTm3iJzlrdR7j6vXP0en_3snrMNk8P69VykzU8r1LW6EIAKWshK2OobKkgRcW4kUYSozloXdNWSGgEI5IJWgMXJRetqCtZCkn4HN1Mvdvgv3YQk-r8LrjxpWJ8HEpKmbPRVU2uJvgYA7RqG-ygw1FRon5oqk79oal-aKqJ5phdTVkYZ-wtBBUbC64BYwM0SRlv_9HyDTnGhUc</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Theodorakatos, Nikolaos P.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202002</creationdate><title>A nonlinear well-determined model for power system observability using Interior-Point methods</title><author>Theodorakatos, Nikolaos P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ca75e08b569dd16f1507923d6d60da3eaab1f56ec5206251be35835f5b9685603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Branch-and-bound (BB) algorithm</topic><topic>Concentrators</topic><topic>Contingency</topic><topic>Interior-Point (IP) method</topic><topic>Measuring instruments</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Numerical analysis</topic><topic>Observability</topic><topic>Optimal placement</topic><topic>Optimization</topic><topic>Phasor measurement unit</topic><topic>Quadratic equations</topic><topic>Well-determined nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theodorakatos, Nikolaos P.</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theodorakatos, Nikolaos P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlinear well-determined model for power system observability using Interior-Point methods</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2020-02</date><risdate>2020</risdate><volume>152</volume><spage>107305</spage><pages>107305-</pages><artnum>107305</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Interior-Point method is used to solve the optimal phasor measurement unit placement problem.•Placement method can consider any number, type, and position, of pre-existing measurement.•Proposed method delivers the optimal solution in polynomial time, even for large systems.
This paper proposes Interior-Point (IP) methods for the solution of the optimal placement of phasor measurement units (PMUs) ensuring complete observability. The optimization problem consists of a quadratic function under a well-determined system of constraints that is, nonlinear equations equal to the number of the design variables defined over the whole search space Rn. A hybrid-optimization technique coupling a branch-and-bound and a local search-procedure based on the (IP) methods is used in solving the model. The (IP) methods detect solution points that yield a minimum objective value as the one obtained by branch-and-bound algorithm. The (IP) methods optimizes the required PMU numbers whereas practical constraints as well as contingency issues as single PMU failure, costs of communication infrastructure (CI) from Phasor Data Concentrator to PMUs and prohibitive installations are satisfied. A large-scale system is also analysed to exhibit the applicability of (IP) methods to practical power system cases.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2019.107305</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2020-02, Vol.152, p.107305, Article 107305 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_proquest_journals_2363908642 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Branch-and-bound (BB) algorithm Concentrators Contingency Interior-Point (IP) method Measuring instruments Nonlinear equations Nonlinear systems Numerical analysis Observability Optimal placement Optimization Phasor measurement unit Quadratic equations Well-determined nonlinear systems |
title | A nonlinear well-determined model for power system observability using Interior-Point methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlinear%20well-determined%20model%20for%20power%20system%20observability%20using%20Interior-Point%20methods&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Theodorakatos,%20Nikolaos%20P.&rft.date=2020-02&rft.volume=152&rft.spage=107305&rft.pages=107305-&rft.artnum=107305&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2019.107305&rft_dat=%3Cproquest_cross%3E2363908642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363908642&rft_id=info:pmid/&rft_els_id=S0263224119311698&rfr_iscdi=true |