One-Step Synthesis of Carbon Nanotubes-Modified and Carbon-Coated Li4Ti5O12 and Its Application to Li Half Cell and LiNi0.8Co0.1Mn0.1O2/Li4Ti5O12 Full Cell

Li 4 Ti 5 O 12 (LTO) composites modified with carbon nanotubes (CNTs) and carbon coating (LTO@C/CNTs) were synthesized by a simple solid-state reaction. The carbon-coated layers reduce the growth of the primary particles, inhibit interface side reactions and increase electron conductivity, so CNTs-m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2020-04, Vol.49 (4), p.2529-2538
Hauptverfasser: Zhang, Pengfei, Liu, Yanxia, Chai, Fengtao, Fan, Yameng, Hou, Aolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2538
container_issue 4
container_start_page 2529
container_title Journal of electronic materials
container_volume 49
creator Zhang, Pengfei
Liu, Yanxia
Chai, Fengtao
Fan, Yameng
Hou, Aolin
description Li 4 Ti 5 O 12 (LTO) composites modified with carbon nanotubes (CNTs) and carbon coating (LTO@C/CNTs) were synthesized by a simple solid-state reaction. The carbon-coated layers reduce the growth of the primary particles, inhibit interface side reactions and increase electron conductivity, so CNTs-modified LTO can form a conductive network and improve the diffusion path of lithium ions. The LTO@C/CNTs composites show a high-rate capability (150 mAh g −1 at 10 C, 145 mAh g −1 at 20 C) with good cycling performance (90.1% and 82.8% capacity retentions after 1000 cycles at 10 C and 20 C, respectively). In addition, superior electrochemical performance is also demonstrated in a full cell with a LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) cathode and LTO@C/CNTs anode (97.1% capacity retentions after 200 cycles at 1 C). The carbon coating and CNTs-modified in LTO can reduce the polarization of potential difference and charge-transfer resistance, improve the diffusion coefficient of lithium ions, and lead to high rate performance and cycle stability.
doi_str_mv 10.1007/s11664-020-07962-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2363721184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363721184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-536230ac95722b2a33d73575827959e17b075ba51ea03143b73eeec2d9d062b43</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMoOKd_wKuC19lykqZpL0dxbrCPi03wLqRtphm1qU3G2G_xz5p9wO68SSDneZ8TeBF6BjIAQsTQASRJjAklmIgsoXh_g3rAY4YhTT5uUY-wBDCnjN-jB-e2hACHFHrod9lovPK6jVaHxn9pZ1xkN1GuusI20UI11u8K7fDcVmZjdBWpprpMcW6VDy8zE68NXwI9zabeRaO2rU2pvAkKbwMQTVQdpLquT8zMLAwZpLkNv5834VjS4dUy3gXsyD6iu42qnX663H30Pn5d5xM8W75N89EMl4ynHnOWUEZUmXFBaUEVY5VgXPCUioxnGkRBBC8UB60Ig5gVgmmtS1plFUloEbM-ejl7287-7LTzcmt3XRNWSsoSJihAeqTomSo761ynN7LtzLfqDhKIPJYgzyXIUII8lSD3IcTOIRfg5lN3V_U_qT85S4ZO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363721184</pqid></control><display><type>article</type><title>One-Step Synthesis of Carbon Nanotubes-Modified and Carbon-Coated Li4Ti5O12 and Its Application to Li Half Cell and LiNi0.8Co0.1Mn0.1O2/Li4Ti5O12 Full Cell</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Pengfei ; Liu, Yanxia ; Chai, Fengtao ; Fan, Yameng ; Hou, Aolin</creator><creatorcontrib>Zhang, Pengfei ; Liu, Yanxia ; Chai, Fengtao ; Fan, Yameng ; Hou, Aolin</creatorcontrib><description>Li 4 Ti 5 O 12 (LTO) composites modified with carbon nanotubes (CNTs) and carbon coating (LTO@C/CNTs) were synthesized by a simple solid-state reaction. The carbon-coated layers reduce the growth of the primary particles, inhibit interface side reactions and increase electron conductivity, so CNTs-modified LTO can form a conductive network and improve the diffusion path of lithium ions. The LTO@C/CNTs composites show a high-rate capability (150 mAh g −1 at 10 C, 145 mAh g −1 at 20 C) with good cycling performance (90.1% and 82.8% capacity retentions after 1000 cycles at 10 C and 20 C, respectively). In addition, superior electrochemical performance is also demonstrated in a full cell with a LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) cathode and LTO@C/CNTs anode (97.1% capacity retentions after 200 cycles at 1 C). The carbon coating and CNTs-modified in LTO can reduce the polarization of potential difference and charge-transfer resistance, improve the diffusion coefficient of lithium ions, and lead to high rate performance and cycle stability.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-07962-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Coating ; Composite materials ; Diffusion coefficient ; Diffusion rate ; Electrochemical analysis ; Electron conductivity ; Electronics and Microelectronics ; Instrumentation ; Lithium ; Lithium ions ; Materials Science ; Optical and Electronic Materials ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2020-04, Vol.49 (4), p.2529-2538</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-536230ac95722b2a33d73575827959e17b075ba51ea03143b73eeec2d9d062b43</citedby><cites>FETCH-LOGICAL-c358t-536230ac95722b2a33d73575827959e17b075ba51ea03143b73eeec2d9d062b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-020-07962-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-020-07962-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Liu, Yanxia</creatorcontrib><creatorcontrib>Chai, Fengtao</creatorcontrib><creatorcontrib>Fan, Yameng</creatorcontrib><creatorcontrib>Hou, Aolin</creatorcontrib><title>One-Step Synthesis of Carbon Nanotubes-Modified and Carbon-Coated Li4Ti5O12 and Its Application to Li Half Cell and LiNi0.8Co0.1Mn0.1O2/Li4Ti5O12 Full Cell</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Li 4 Ti 5 O 12 (LTO) composites modified with carbon nanotubes (CNTs) and carbon coating (LTO@C/CNTs) were synthesized by a simple solid-state reaction. The carbon-coated layers reduce the growth of the primary particles, inhibit interface side reactions and increase electron conductivity, so CNTs-modified LTO can form a conductive network and improve the diffusion path of lithium ions. The LTO@C/CNTs composites show a high-rate capability (150 mAh g −1 at 10 C, 145 mAh g −1 at 20 C) with good cycling performance (90.1% and 82.8% capacity retentions after 1000 cycles at 10 C and 20 C, respectively). In addition, superior electrochemical performance is also demonstrated in a full cell with a LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) cathode and LTO@C/CNTs anode (97.1% capacity retentions after 200 cycles at 1 C). The carbon coating and CNTs-modified in LTO can reduce the polarization of potential difference and charge-transfer resistance, improve the diffusion coefficient of lithium ions, and lead to high rate performance and cycle stability.</description><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Coating</subject><subject>Composite materials</subject><subject>Diffusion coefficient</subject><subject>Diffusion rate</subject><subject>Electrochemical analysis</subject><subject>Electron conductivity</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kV1LwzAUhoMoOKd_wKuC19lykqZpL0dxbrCPi03wLqRtphm1qU3G2G_xz5p9wO68SSDneZ8TeBF6BjIAQsTQASRJjAklmIgsoXh_g3rAY4YhTT5uUY-wBDCnjN-jB-e2hACHFHrod9lovPK6jVaHxn9pZ1xkN1GuusI20UI11u8K7fDcVmZjdBWpprpMcW6VDy8zE68NXwI9zabeRaO2rU2pvAkKbwMQTVQdpLquT8zMLAwZpLkNv5834VjS4dUy3gXsyD6iu42qnX663H30Pn5d5xM8W75N89EMl4ynHnOWUEZUmXFBaUEVY5VgXPCUioxnGkRBBC8UB60Ig5gVgmmtS1plFUloEbM-ejl7287-7LTzcmt3XRNWSsoSJihAeqTomSo761ynN7LtzLfqDhKIPJYgzyXIUII8lSD3IcTOIRfg5lN3V_U_qT85S4ZO</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Zhang, Pengfei</creator><creator>Liu, Yanxia</creator><creator>Chai, Fengtao</creator><creator>Fan, Yameng</creator><creator>Hou, Aolin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200401</creationdate><title>One-Step Synthesis of Carbon Nanotubes-Modified and Carbon-Coated Li4Ti5O12 and Its Application to Li Half Cell and LiNi0.8Co0.1Mn0.1O2/Li4Ti5O12 Full Cell</title><author>Zhang, Pengfei ; Liu, Yanxia ; Chai, Fengtao ; Fan, Yameng ; Hou, Aolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-536230ac95722b2a33d73575827959e17b075ba51ea03143b73eeec2d9d062b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Coating</topic><topic>Composite materials</topic><topic>Diffusion coefficient</topic><topic>Diffusion rate</topic><topic>Electrochemical analysis</topic><topic>Electron conductivity</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Liu, Yanxia</creatorcontrib><creatorcontrib>Chai, Fengtao</creatorcontrib><creatorcontrib>Fan, Yameng</creatorcontrib><creatorcontrib>Hou, Aolin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Pengfei</au><au>Liu, Yanxia</au><au>Chai, Fengtao</au><au>Fan, Yameng</au><au>Hou, Aolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Step Synthesis of Carbon Nanotubes-Modified and Carbon-Coated Li4Ti5O12 and Its Application to Li Half Cell and LiNi0.8Co0.1Mn0.1O2/Li4Ti5O12 Full Cell</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>49</volume><issue>4</issue><spage>2529</spage><epage>2538</epage><pages>2529-2538</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Li 4 Ti 5 O 12 (LTO) composites modified with carbon nanotubes (CNTs) and carbon coating (LTO@C/CNTs) were synthesized by a simple solid-state reaction. The carbon-coated layers reduce the growth of the primary particles, inhibit interface side reactions and increase electron conductivity, so CNTs-modified LTO can form a conductive network and improve the diffusion path of lithium ions. The LTO@C/CNTs composites show a high-rate capability (150 mAh g −1 at 10 C, 145 mAh g −1 at 20 C) with good cycling performance (90.1% and 82.8% capacity retentions after 1000 cycles at 10 C and 20 C, respectively). In addition, superior electrochemical performance is also demonstrated in a full cell with a LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) cathode and LTO@C/CNTs anode (97.1% capacity retentions after 200 cycles at 1 C). The carbon coating and CNTs-modified in LTO can reduce the polarization of potential difference and charge-transfer resistance, improve the diffusion coefficient of lithium ions, and lead to high rate performance and cycle stability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-07962-w</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2020-04, Vol.49 (4), p.2529-2538
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2363721184
source Springer Nature - Complete Springer Journals
subjects Carbon
Carbon nanotubes
Characterization and Evaluation of Materials
Charge transfer
Chemistry and Materials Science
Coating
Composite materials
Diffusion coefficient
Diffusion rate
Electrochemical analysis
Electron conductivity
Electronics and Microelectronics
Instrumentation
Lithium
Lithium ions
Materials Science
Optical and Electronic Materials
Solid State Physics
title One-Step Synthesis of Carbon Nanotubes-Modified and Carbon-Coated Li4Ti5O12 and Its Application to Li Half Cell and LiNi0.8Co0.1Mn0.1O2/Li4Ti5O12 Full Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Step%20Synthesis%20of%20Carbon%20Nanotubes-Modified%20and%20Carbon-Coated%20Li4Ti5O12%20and%20Its%20Application%20to%20Li%20Half%20Cell%20and%20LiNi0.8Co0.1Mn0.1O2/Li4Ti5O12%20Full%20Cell&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Zhang,%20Pengfei&rft.date=2020-04-01&rft.volume=49&rft.issue=4&rft.spage=2529&rft.epage=2538&rft.pages=2529-2538&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-07962-w&rft_dat=%3Cproquest_cross%3E2363721184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363721184&rft_id=info:pmid/&rfr_iscdi=true