Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging

Evolution of Cu 2 (In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu 2 (In,Sn) was found, which showed two different morphologies, a coarse-grained Cu 2 (In,Sn) subl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2020-04, Vol.49 (4), p.2651-2659
Hauptverfasser: Tian, Feifei, Pang, Xueyong, Xu, Bo, Liu, Zhi-Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2659
container_issue 4
container_start_page 2651
container_title Journal of electronic materials
container_volume 49
creator Tian, Feifei
Pang, Xueyong
Xu, Bo
Liu, Zhi-Quan
description Evolution of Cu 2 (In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu 2 (In,Sn) was found, which showed two different morphologies, a coarse-grained Cu 2 (In,Sn) sublayer and a fine-grained Cu2(In,Sn) sublayer. The fine Cu 2 (In,Sn) grains had and always kept a granular morphology without any growth orientation. The morphology of coarse Cu 2 (In,Sn) grains evolved from poly-facet pyramidal-type without preferential orientation into hexagonal structure preferring only one elongated direction after aging up to 90 min. Electron beam backscattered diffraction revealed that coarse-grain Cu 2 (In,Sn) compound grew along [0001] axis and exposed {11-20} crystal planes. Growth mechanism of coarse Cu 2 (In,Sn) grains related closely to thermodynamic stability of hexagonal structure, which drove by reduction of surface energy from higher to lower, and first principles calculations verified that {11-20} crystal planes had the lowest surface energy. Fine Cu 2 (In,Sn) grains had a special growth mechanism at the root of coarse Cu 2 (In,Sn) grains compared to normal fine Cu 2 (In,Sn) grains underneath coarse Cu 2 (In,Sn) grains.
doi_str_mv 10.1007/s11664-019-07909-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2363717158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363717158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278w-b24698239ce71339db04edb4bb492cf4e404d84a2ca5fe2b9494971ad726371d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgRsFobnNb1norVBSq4C5kJmfaKdOkTWYc-gC-t1MruJMsziL_9x_Oh9AZo9eM0uQmMBbHklCWEZpkNCPdHhqwSArC0vhjHw2oiBmJuIgO0VEIC0pZxFI2QF_3n65um8pZrK3Bj951zRw_QzHXtgpL7Eo8avnF2F5N7SV-cH4JBt9C0wFYPLZEplOLp6424H8KXl29KfwmNLquKws9jO9aX9kZnjg7I2_VEvCkWreVIdNGN4CHs_7zBB2Uug5w-juP0fvD_dvoiUxeHsej4YQUPEk7knMZZykXWQEJEyIzOZVgcpnnMuNFKUFSaVKpeaGjEnieyf4lTJuExyJhRhyj813vyrt1C6FRC9d6269UXGwjCYvSPsV3qcK7EDyUauWrpfYbxaja6lY73arXrX50q66HxA4Kq-254P-q_6G-AWCmgtE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363717158</pqid></control><display><type>article</type><title>Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging</title><source>Springer Nature - Complete Springer Journals</source><creator>Tian, Feifei ; Pang, Xueyong ; Xu, Bo ; Liu, Zhi-Quan</creator><creatorcontrib>Tian, Feifei ; Pang, Xueyong ; Xu, Bo ; Liu, Zhi-Quan</creatorcontrib><description>Evolution of Cu 2 (In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu 2 (In,Sn) was found, which showed two different morphologies, a coarse-grained Cu 2 (In,Sn) sublayer and a fine-grained Cu2(In,Sn) sublayer. The fine Cu 2 (In,Sn) grains had and always kept a granular morphology without any growth orientation. The morphology of coarse Cu 2 (In,Sn) grains evolved from poly-facet pyramidal-type without preferential orientation into hexagonal structure preferring only one elongated direction after aging up to 90 min. Electron beam backscattered diffraction revealed that coarse-grain Cu 2 (In,Sn) compound grew along [0001] axis and exposed {11-20} crystal planes. Growth mechanism of coarse Cu 2 (In,Sn) grains related closely to thermodynamic stability of hexagonal structure, which drove by reduction of surface energy from higher to lower, and first principles calculations verified that {11-20} crystal planes had the lowest surface energy. Fine Cu 2 (In,Sn) grains had a special growth mechanism at the root of coarse Cu 2 (In,Sn) grains compared to normal fine Cu 2 (In,Sn) grains underneath coarse Cu 2 (In,Sn) grains.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07909-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aging ; Backscattering ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Crystal growth ; Electron beams ; Electronics and Microelectronics ; Elongated structure ; Evolution ; First principles ; Grains ; Instrumentation ; Materials Science ; Morphology ; Optical and Electronic Materials ; Planes ; Polycrystals ; Solid State Physics ; Structural stability ; Surface energy ; Tin</subject><ispartof>Journal of electronic materials, 2020-04, Vol.49 (4), p.2651-2659</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278w-b24698239ce71339db04edb4bb492cf4e404d84a2ca5fe2b9494971ad726371d3</citedby><cites>FETCH-LOGICAL-c278w-b24698239ce71339db04edb4bb492cf4e404d84a2ca5fe2b9494971ad726371d3</cites><orcidid>0000-0001-6909-9959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07909-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07909-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Tian, Feifei</creatorcontrib><creatorcontrib>Pang, Xueyong</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Liu, Zhi-Quan</creatorcontrib><title>Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Evolution of Cu 2 (In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu 2 (In,Sn) was found, which showed two different morphologies, a coarse-grained Cu 2 (In,Sn) sublayer and a fine-grained Cu2(In,Sn) sublayer. The fine Cu 2 (In,Sn) grains had and always kept a granular morphology without any growth orientation. The morphology of coarse Cu 2 (In,Sn) grains evolved from poly-facet pyramidal-type without preferential orientation into hexagonal structure preferring only one elongated direction after aging up to 90 min. Electron beam backscattered diffraction revealed that coarse-grain Cu 2 (In,Sn) compound grew along [0001] axis and exposed {11-20} crystal planes. Growth mechanism of coarse Cu 2 (In,Sn) grains related closely to thermodynamic stability of hexagonal structure, which drove by reduction of surface energy from higher to lower, and first principles calculations verified that {11-20} crystal planes had the lowest surface energy. Fine Cu 2 (In,Sn) grains had a special growth mechanism at the root of coarse Cu 2 (In,Sn) grains compared to normal fine Cu 2 (In,Sn) grains underneath coarse Cu 2 (In,Sn) grains.</description><subject>Aging</subject><subject>Backscattering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crystal growth</subject><subject>Electron beams</subject><subject>Electronics and Microelectronics</subject><subject>Elongated structure</subject><subject>Evolution</subject><subject>First principles</subject><subject>Grains</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Planes</subject><subject>Polycrystals</subject><subject>Solid State Physics</subject><subject>Structural stability</subject><subject>Surface energy</subject><subject>Tin</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKAzEUhoMoWC8v4CrgRsFobnNb1norVBSq4C5kJmfaKdOkTWYc-gC-t1MruJMsziL_9x_Oh9AZo9eM0uQmMBbHklCWEZpkNCPdHhqwSArC0vhjHw2oiBmJuIgO0VEIC0pZxFI2QF_3n65um8pZrK3Bj951zRw_QzHXtgpL7Eo8avnF2F5N7SV-cH4JBt9C0wFYPLZEplOLp6424H8KXl29KfwmNLquKws9jO9aX9kZnjg7I2_VEvCkWreVIdNGN4CHs_7zBB2Uug5w-juP0fvD_dvoiUxeHsej4YQUPEk7knMZZykXWQEJEyIzOZVgcpnnMuNFKUFSaVKpeaGjEnieyf4lTJuExyJhRhyj813vyrt1C6FRC9d6269UXGwjCYvSPsV3qcK7EDyUauWrpfYbxaja6lY73arXrX50q66HxA4Kq-254P-q_6G-AWCmgtE</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Tian, Feifei</creator><creator>Pang, Xueyong</creator><creator>Xu, Bo</creator><creator>Liu, Zhi-Quan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-6909-9959</orcidid></search><sort><creationdate>20200401</creationdate><title>Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging</title><author>Tian, Feifei ; Pang, Xueyong ; Xu, Bo ; Liu, Zhi-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278w-b24698239ce71339db04edb4bb492cf4e404d84a2ca5fe2b9494971ad726371d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Backscattering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crystal growth</topic><topic>Electron beams</topic><topic>Electronics and Microelectronics</topic><topic>Elongated structure</topic><topic>Evolution</topic><topic>First principles</topic><topic>Grains</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Planes</topic><topic>Polycrystals</topic><topic>Solid State Physics</topic><topic>Structural stability</topic><topic>Surface energy</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Feifei</creatorcontrib><creatorcontrib>Pang, Xueyong</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Liu, Zhi-Quan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Feifei</au><au>Pang, Xueyong</au><au>Xu, Bo</au><au>Liu, Zhi-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>49</volume><issue>4</issue><spage>2651</spage><epage>2659</epage><pages>2651-2659</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Evolution of Cu 2 (In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu 2 (In,Sn) was found, which showed two different morphologies, a coarse-grained Cu 2 (In,Sn) sublayer and a fine-grained Cu2(In,Sn) sublayer. The fine Cu 2 (In,Sn) grains had and always kept a granular morphology without any growth orientation. The morphology of coarse Cu 2 (In,Sn) grains evolved from poly-facet pyramidal-type without preferential orientation into hexagonal structure preferring only one elongated direction after aging up to 90 min. Electron beam backscattered diffraction revealed that coarse-grain Cu 2 (In,Sn) compound grew along [0001] axis and exposed {11-20} crystal planes. Growth mechanism of coarse Cu 2 (In,Sn) grains related closely to thermodynamic stability of hexagonal structure, which drove by reduction of surface energy from higher to lower, and first principles calculations verified that {11-20} crystal planes had the lowest surface energy. Fine Cu 2 (In,Sn) grains had a special growth mechanism at the root of coarse Cu 2 (In,Sn) grains compared to normal fine Cu 2 (In,Sn) grains underneath coarse Cu 2 (In,Sn) grains.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07909-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6909-9959</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2020-04, Vol.49 (4), p.2651-2659
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2363717158
source Springer Nature - Complete Springer Journals
subjects Aging
Backscattering
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Crystal growth
Electron beams
Electronics and Microelectronics
Elongated structure
Evolution
First principles
Grains
Instrumentation
Materials Science
Morphology
Optical and Electronic Materials
Planes
Polycrystals
Solid State Physics
Structural stability
Surface energy
Tin
title Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20and%20Growth%20Mechanism%20of%20Cu2(In,Sn)%20Formed%20Between%20In-48Sn%20Solder%20and%20Polycrystalline%20Cu%20During%20Long-Time%20Liquid-State%20Aging&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Tian,%20Feifei&rft.date=2020-04-01&rft.volume=49&rft.issue=4&rft.spage=2651&rft.epage=2659&rft.pages=2651-2659&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07909-w&rft_dat=%3Cproquest_cross%3E2363717158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363717158&rft_id=info:pmid/&rfr_iscdi=true