Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging
Evolution of Cu 2 (In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu 2 (In,Sn) was found, which showed two different morphologies, a coarse-grained Cu 2 (In,Sn) subl...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2020-04, Vol.49 (4), p.2651-2659 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2659 |
---|---|
container_issue | 4 |
container_start_page | 2651 |
container_title | Journal of electronic materials |
container_volume | 49 |
creator | Tian, Feifei Pang, Xueyong Xu, Bo Liu, Zhi-Quan |
description | Evolution of Cu
2
(In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu
2
(In,Sn) was found, which showed two different morphologies, a coarse-grained Cu
2
(In,Sn) sublayer and a fine-grained Cu2(In,Sn) sublayer. The fine Cu
2
(In,Sn) grains had and always kept a granular morphology without any growth orientation. The morphology of coarse Cu
2
(In,Sn) grains evolved from poly-facet pyramidal-type without preferential orientation into hexagonal structure preferring only one elongated direction after aging up to 90 min. Electron beam backscattered diffraction revealed that coarse-grain Cu
2
(In,Sn) compound grew along [0001] axis and exposed {11-20} crystal planes. Growth mechanism of coarse Cu
2
(In,Sn) grains related closely to thermodynamic stability of hexagonal structure, which drove by reduction of surface energy from higher to lower, and first principles calculations verified that {11-20} crystal planes had the lowest surface energy. Fine Cu
2
(In,Sn) grains had a special growth mechanism at the root of coarse Cu
2
(In,Sn) grains compared to normal fine Cu
2
(In,Sn) grains underneath coarse Cu
2
(In,Sn) grains. |
doi_str_mv | 10.1007/s11664-019-07909-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2363717158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363717158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278w-b24698239ce71339db04edb4bb492cf4e404d84a2ca5fe2b9494971ad726371d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgRsFobnNb1norVBSq4C5kJmfaKdOkTWYc-gC-t1MruJMsziL_9x_Oh9AZo9eM0uQmMBbHklCWEZpkNCPdHhqwSArC0vhjHw2oiBmJuIgO0VEIC0pZxFI2QF_3n65um8pZrK3Bj951zRw_QzHXtgpL7Eo8avnF2F5N7SV-cH4JBt9C0wFYPLZEplOLp6424H8KXl29KfwmNLquKws9jO9aX9kZnjg7I2_VEvCkWreVIdNGN4CHs_7zBB2Uug5w-juP0fvD_dvoiUxeHsej4YQUPEk7knMZZykXWQEJEyIzOZVgcpnnMuNFKUFSaVKpeaGjEnieyf4lTJuExyJhRhyj813vyrt1C6FRC9d6269UXGwjCYvSPsV3qcK7EDyUauWrpfYbxaja6lY73arXrX50q66HxA4Kq-254P-q_6G-AWCmgtE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363717158</pqid></control><display><type>article</type><title>Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging</title><source>Springer Nature - Complete Springer Journals</source><creator>Tian, Feifei ; Pang, Xueyong ; Xu, Bo ; Liu, Zhi-Quan</creator><creatorcontrib>Tian, Feifei ; Pang, Xueyong ; Xu, Bo ; Liu, Zhi-Quan</creatorcontrib><description>Evolution of Cu
2
(In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu
2
(In,Sn) was found, which showed two different morphologies, a coarse-grained Cu
2
(In,Sn) sublayer and a fine-grained Cu2(In,Sn) sublayer. The fine Cu
2
(In,Sn) grains had and always kept a granular morphology without any growth orientation. The morphology of coarse Cu
2
(In,Sn) grains evolved from poly-facet pyramidal-type without preferential orientation into hexagonal structure preferring only one elongated direction after aging up to 90 min. Electron beam backscattered diffraction revealed that coarse-grain Cu
2
(In,Sn) compound grew along [0001] axis and exposed {11-20} crystal planes. Growth mechanism of coarse Cu
2
(In,Sn) grains related closely to thermodynamic stability of hexagonal structure, which drove by reduction of surface energy from higher to lower, and first principles calculations verified that {11-20} crystal planes had the lowest surface energy. Fine Cu
2
(In,Sn) grains had a special growth mechanism at the root of coarse Cu
2
(In,Sn) grains compared to normal fine Cu
2
(In,Sn) grains underneath coarse Cu
2
(In,Sn) grains.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07909-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aging ; Backscattering ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Crystal growth ; Electron beams ; Electronics and Microelectronics ; Elongated structure ; Evolution ; First principles ; Grains ; Instrumentation ; Materials Science ; Morphology ; Optical and Electronic Materials ; Planes ; Polycrystals ; Solid State Physics ; Structural stability ; Surface energy ; Tin</subject><ispartof>Journal of electronic materials, 2020-04, Vol.49 (4), p.2651-2659</ispartof><rights>The Minerals, Metals & Materials Society 2020</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278w-b24698239ce71339db04edb4bb492cf4e404d84a2ca5fe2b9494971ad726371d3</citedby><cites>FETCH-LOGICAL-c278w-b24698239ce71339db04edb4bb492cf4e404d84a2ca5fe2b9494971ad726371d3</cites><orcidid>0000-0001-6909-9959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07909-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07909-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Tian, Feifei</creatorcontrib><creatorcontrib>Pang, Xueyong</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Liu, Zhi-Quan</creatorcontrib><title>Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Evolution of Cu
2
(In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu
2
(In,Sn) was found, which showed two different morphologies, a coarse-grained Cu
2
(In,Sn) sublayer and a fine-grained Cu2(In,Sn) sublayer. The fine Cu
2
(In,Sn) grains had and always kept a granular morphology without any growth orientation. The morphology of coarse Cu
2
(In,Sn) grains evolved from poly-facet pyramidal-type without preferential orientation into hexagonal structure preferring only one elongated direction after aging up to 90 min. Electron beam backscattered diffraction revealed that coarse-grain Cu
2
(In,Sn) compound grew along [0001] axis and exposed {11-20} crystal planes. Growth mechanism of coarse Cu
2
(In,Sn) grains related closely to thermodynamic stability of hexagonal structure, which drove by reduction of surface energy from higher to lower, and first principles calculations verified that {11-20} crystal planes had the lowest surface energy. Fine Cu
2
(In,Sn) grains had a special growth mechanism at the root of coarse Cu
2
(In,Sn) grains compared to normal fine Cu
2
(In,Sn) grains underneath coarse Cu
2
(In,Sn) grains.</description><subject>Aging</subject><subject>Backscattering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crystal growth</subject><subject>Electron beams</subject><subject>Electronics and Microelectronics</subject><subject>Elongated structure</subject><subject>Evolution</subject><subject>First principles</subject><subject>Grains</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Planes</subject><subject>Polycrystals</subject><subject>Solid State Physics</subject><subject>Structural stability</subject><subject>Surface energy</subject><subject>Tin</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKAzEUhoMoWC8v4CrgRsFobnNb1norVBSq4C5kJmfaKdOkTWYc-gC-t1MruJMsziL_9x_Oh9AZo9eM0uQmMBbHklCWEZpkNCPdHhqwSArC0vhjHw2oiBmJuIgO0VEIC0pZxFI2QF_3n65um8pZrK3Bj951zRw_QzHXtgpL7Eo8avnF2F5N7SV-cH4JBt9C0wFYPLZEplOLp6424H8KXl29KfwmNLquKws9jO9aX9kZnjg7I2_VEvCkWreVIdNGN4CHs_7zBB2Uug5w-juP0fvD_dvoiUxeHsej4YQUPEk7knMZZykXWQEJEyIzOZVgcpnnMuNFKUFSaVKpeaGjEnieyf4lTJuExyJhRhyj813vyrt1C6FRC9d6269UXGwjCYvSPsV3qcK7EDyUauWrpfYbxaja6lY73arXrX50q66HxA4Kq-254P-q_6G-AWCmgtE</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Tian, Feifei</creator><creator>Pang, Xueyong</creator><creator>Xu, Bo</creator><creator>Liu, Zhi-Quan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-6909-9959</orcidid></search><sort><creationdate>20200401</creationdate><title>Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging</title><author>Tian, Feifei ; Pang, Xueyong ; Xu, Bo ; Liu, Zhi-Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278w-b24698239ce71339db04edb4bb492cf4e404d84a2ca5fe2b9494971ad726371d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Backscattering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crystal growth</topic><topic>Electron beams</topic><topic>Electronics and Microelectronics</topic><topic>Elongated structure</topic><topic>Evolution</topic><topic>First principles</topic><topic>Grains</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Planes</topic><topic>Polycrystals</topic><topic>Solid State Physics</topic><topic>Structural stability</topic><topic>Surface energy</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Feifei</creatorcontrib><creatorcontrib>Pang, Xueyong</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Liu, Zhi-Quan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Feifei</au><au>Pang, Xueyong</au><au>Xu, Bo</au><au>Liu, Zhi-Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>49</volume><issue>4</issue><spage>2651</spage><epage>2659</epage><pages>2651-2659</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Evolution of Cu
2
(In,Sn) formed between In-48Sn solder and polycrystalline Cu during long-time liquid-state aging was systematically investigated. During aging at 160°C up to 90 min, one IMC species, Cu
2
(In,Sn) was found, which showed two different morphologies, a coarse-grained Cu
2
(In,Sn) sublayer and a fine-grained Cu2(In,Sn) sublayer. The fine Cu
2
(In,Sn) grains had and always kept a granular morphology without any growth orientation. The morphology of coarse Cu
2
(In,Sn) grains evolved from poly-facet pyramidal-type without preferential orientation into hexagonal structure preferring only one elongated direction after aging up to 90 min. Electron beam backscattered diffraction revealed that coarse-grain Cu
2
(In,Sn) compound grew along [0001] axis and exposed {11-20} crystal planes. Growth mechanism of coarse Cu
2
(In,Sn) grains related closely to thermodynamic stability of hexagonal structure, which drove by reduction of surface energy from higher to lower, and first principles calculations verified that {11-20} crystal planes had the lowest surface energy. Fine Cu
2
(In,Sn) grains had a special growth mechanism at the root of coarse Cu
2
(In,Sn) grains compared to normal fine Cu
2
(In,Sn) grains underneath coarse Cu
2
(In,Sn) grains.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07909-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6909-9959</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2020-04, Vol.49 (4), p.2651-2659 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2363717158 |
source | Springer Nature - Complete Springer Journals |
subjects | Aging Backscattering Characterization and Evaluation of Materials Chemistry and Materials Science Copper Crystal growth Electron beams Electronics and Microelectronics Elongated structure Evolution First principles Grains Instrumentation Materials Science Morphology Optical and Electronic Materials Planes Polycrystals Solid State Physics Structural stability Surface energy Tin |
title | Evolution and Growth Mechanism of Cu2(In,Sn) Formed Between In-48Sn Solder and Polycrystalline Cu During Long-Time Liquid-State Aging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20and%20Growth%20Mechanism%20of%20Cu2(In,Sn)%20Formed%20Between%20In-48Sn%20Solder%20and%20Polycrystalline%20Cu%20During%20Long-Time%20Liquid-State%20Aging&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Tian,%20Feifei&rft.date=2020-04-01&rft.volume=49&rft.issue=4&rft.spage=2651&rft.epage=2659&rft.pages=2651-2659&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07909-w&rft_dat=%3Cproquest_cross%3E2363717158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363717158&rft_id=info:pmid/&rfr_iscdi=true |