Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode
Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, un...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-02, Vol.30 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | An, Yongling Tian, Yuan Wei, Hao Xi, Baojuan Xiong, Shenglin Feng, Jinkui Qian, Yitai |
description | Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated and tested as a stable anode for lithium‐ion batteries (LIBs). The porosity of Si as well as graphitization degree and thickness of the carbon layer can be controlled by adjusting reaction conditions. The rationally designed porosity and carbon layer of NPSi@C can improve electronic conductivity and buffer volume change of Si without destroying the carbon layer or disrupting the solid electrolyte interface layer. The optimized NPSi@C anode shows a stable cyclability with 0.00685% capacity decay per cycle at 5 A g−1 over 2000 cycles for LIBs. The energy storage mechanism is explored by quantitative kinetics analysis and proven to be a capacitance‐battery dual model. Moreover, a novel 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds, NPSi@C can induce uniform Li deposition with buffered volume expansion, which is proven by exploring Li‐metal deposition morphology on Cu foil and MXene@NPSi@C. The practical potential application of NPSi@C and MXene@NPSi@C is evaluated by full cell tests with a Li(Ni0.8Co0.1Mn0.1)O2 cathode.
Uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated as an anode for lithium‐ion batteries. The porosity of Si, graphitization degree, and thickness of carbon layer can be controlled by adjusting reaction conditions. Moreover, a 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds for Li‐metal anode, NPSi@C can induce uniform Li deposition with buffered volume expansion. |
doi_str_mv | 10.1002/adfm.201908721 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2363710057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363710057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3561-4beee8357c0d1cc82021add89933256b053849b70eb1ea5a3052c44e97d6d96e3</originalsourceid><addsrcrecordid>eNqFkc9Kw0AQxoMoWKtXzwueU_dP_t4s0dZCq0IVegub7KTdkmbrZkOpJx_BV_DVfBK3jVRvnmaY-X7fwHyOc0lwj2BMr7koVj2KSYyjkJIjp0MCErgM0-j40JPZqXNW10uMSRgyr-N8Pimtamm2X-8fiFcCDTVfL6SRb9xIVdlpoiqjVVmCQAOeaZnvF0gV6IFXam3xpkZTWcpcVTcJ15ldFkqjsTQL2azQ1CjN57A3H5kaWb9lM29NNlaDJjOo4C9ij07A8BL1KyXg3DkpeFnDxU_tOi-Du-fk3h0_DkdJf-zmzA-I62UAEDE_zLEgeR5RTAkXIopjxqgfZNhnkRdnIYaMAPc5wz7NPQ_iUAQiDoB1navWd63VawO1SZeq0ZU9mVIWsND-2A-tqteqcvu2WkORrrVccb1NCU53MaS7GNJDDBaIW2AjS9j-o077t4PJL_sNabCRvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363710057</pqid></control><display><type>article</type><title>Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode</title><source>Wiley Journals</source><creator>An, Yongling ; Tian, Yuan ; Wei, Hao ; Xi, Baojuan ; Xiong, Shenglin ; Feng, Jinkui ; Qian, Yitai</creator><creatorcontrib>An, Yongling ; Tian, Yuan ; Wei, Hao ; Xi, Baojuan ; Xiong, Shenglin ; Feng, Jinkui ; Qian, Yitai</creatorcontrib><description>Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated and tested as a stable anode for lithium‐ion batteries (LIBs). The porosity of Si as well as graphitization degree and thickness of the carbon layer can be controlled by adjusting reaction conditions. The rationally designed porosity and carbon layer of NPSi@C can improve electronic conductivity and buffer volume change of Si without destroying the carbon layer or disrupting the solid electrolyte interface layer. The optimized NPSi@C anode shows a stable cyclability with 0.00685% capacity decay per cycle at 5 A g−1 over 2000 cycles for LIBs. The energy storage mechanism is explored by quantitative kinetics analysis and proven to be a capacitance‐battery dual model. Moreover, a novel 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds, NPSi@C can induce uniform Li deposition with buffered volume expansion, which is proven by exploring Li‐metal deposition morphology on Cu foil and MXene@NPSi@C. The practical potential application of NPSi@C and MXene@NPSi@C is evaluated by full cell tests with a Li(Ni0.8Co0.1Mn0.1)O2 cathode.
Uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated as an anode for lithium‐ion batteries. The porosity of Si, graphitization degree, and thickness of carbon layer can be controlled by adjusting reaction conditions. Moreover, a 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds for Li‐metal anode, NPSi@C can induce uniform Li deposition with buffered volume expansion.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201908721</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Buffers ; Carbon ; Commercialization ; Conjugation ; controlled fabrication ; Copper ; Decay rate ; Dendritic structure ; Deposition ; Disruption ; Electrical resistivity ; Energy storage ; Graphitization ; Lithium ; Lithium batteries ; Lithium-ion batteries ; lithium‐metal batteries ; Materials science ; Metal foils ; Morphology ; MXene ; MXenes ; Nucleation ; Porosity ; Reaction kinetics ; Silicon ; silicon@carbon anodes ; Solid electrolytes ; Thickness ; Three dimensional models ; Two dimensional models</subject><ispartof>Advanced functional materials, 2020-02, Vol.30 (9), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3561-4beee8357c0d1cc82021add89933256b053849b70eb1ea5a3052c44e97d6d96e3</citedby><cites>FETCH-LOGICAL-c3561-4beee8357c0d1cc82021add89933256b053849b70eb1ea5a3052c44e97d6d96e3</cites><orcidid>0000-0002-5683-849X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201908721$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201908721$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>An, Yongling</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Xi, Baojuan</creatorcontrib><creatorcontrib>Xiong, Shenglin</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><title>Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode</title><title>Advanced functional materials</title><description>Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated and tested as a stable anode for lithium‐ion batteries (LIBs). The porosity of Si as well as graphitization degree and thickness of the carbon layer can be controlled by adjusting reaction conditions. The rationally designed porosity and carbon layer of NPSi@C can improve electronic conductivity and buffer volume change of Si without destroying the carbon layer or disrupting the solid electrolyte interface layer. The optimized NPSi@C anode shows a stable cyclability with 0.00685% capacity decay per cycle at 5 A g−1 over 2000 cycles for LIBs. The energy storage mechanism is explored by quantitative kinetics analysis and proven to be a capacitance‐battery dual model. Moreover, a novel 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds, NPSi@C can induce uniform Li deposition with buffered volume expansion, which is proven by exploring Li‐metal deposition morphology on Cu foil and MXene@NPSi@C. The practical potential application of NPSi@C and MXene@NPSi@C is evaluated by full cell tests with a Li(Ni0.8Co0.1Mn0.1)O2 cathode.
Uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated as an anode for lithium‐ion batteries. The porosity of Si, graphitization degree, and thickness of carbon layer can be controlled by adjusting reaction conditions. Moreover, a 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds for Li‐metal anode, NPSi@C can induce uniform Li deposition with buffered volume expansion.</description><subject>Anodes</subject><subject>Buffers</subject><subject>Carbon</subject><subject>Commercialization</subject><subject>Conjugation</subject><subject>controlled fabrication</subject><subject>Copper</subject><subject>Decay rate</subject><subject>Dendritic structure</subject><subject>Deposition</subject><subject>Disruption</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>Graphitization</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>lithium‐metal batteries</subject><subject>Materials science</subject><subject>Metal foils</subject><subject>Morphology</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nucleation</subject><subject>Porosity</subject><subject>Reaction kinetics</subject><subject>Silicon</subject><subject>silicon@carbon anodes</subject><subject>Solid electrolytes</subject><subject>Thickness</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc9Kw0AQxoMoWKtXzwueU_dP_t4s0dZCq0IVegub7KTdkmbrZkOpJx_BV_DVfBK3jVRvnmaY-X7fwHyOc0lwj2BMr7koVj2KSYyjkJIjp0MCErgM0-j40JPZqXNW10uMSRgyr-N8Pimtamm2X-8fiFcCDTVfL6SRb9xIVdlpoiqjVVmCQAOeaZnvF0gV6IFXam3xpkZTWcpcVTcJ15ldFkqjsTQL2azQ1CjN57A3H5kaWb9lM29NNlaDJjOo4C9ij07A8BL1KyXg3DkpeFnDxU_tOi-Du-fk3h0_DkdJf-zmzA-I62UAEDE_zLEgeR5RTAkXIopjxqgfZNhnkRdnIYaMAPc5wz7NPQ_iUAQiDoB1navWd63VawO1SZeq0ZU9mVIWsND-2A-tqteqcvu2WkORrrVccb1NCU53MaS7GNJDDBaIW2AjS9j-o077t4PJL_sNabCRvg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>An, Yongling</creator><creator>Tian, Yuan</creator><creator>Wei, Hao</creator><creator>Xi, Baojuan</creator><creator>Xiong, Shenglin</creator><creator>Feng, Jinkui</creator><creator>Qian, Yitai</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5683-849X</orcidid></search><sort><creationdate>20200201</creationdate><title>Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode</title><author>An, Yongling ; Tian, Yuan ; Wei, Hao ; Xi, Baojuan ; Xiong, Shenglin ; Feng, Jinkui ; Qian, Yitai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3561-4beee8357c0d1cc82021add89933256b053849b70eb1ea5a3052c44e97d6d96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Buffers</topic><topic>Carbon</topic><topic>Commercialization</topic><topic>Conjugation</topic><topic>controlled fabrication</topic><topic>Copper</topic><topic>Decay rate</topic><topic>Dendritic structure</topic><topic>Deposition</topic><topic>Disruption</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>Graphitization</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>lithium‐metal batteries</topic><topic>Materials science</topic><topic>Metal foils</topic><topic>Morphology</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nucleation</topic><topic>Porosity</topic><topic>Reaction kinetics</topic><topic>Silicon</topic><topic>silicon@carbon anodes</topic><topic>Solid electrolytes</topic><topic>Thickness</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Yongling</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Xi, Baojuan</creatorcontrib><creatorcontrib>Xiong, Shenglin</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Yongling</au><au>Tian, Yuan</au><au>Wei, Hao</au><au>Xi, Baojuan</au><au>Xiong, Shenglin</au><au>Feng, Jinkui</au><au>Qian, Yitai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode</atitle><jtitle>Advanced functional materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>30</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated and tested as a stable anode for lithium‐ion batteries (LIBs). The porosity of Si as well as graphitization degree and thickness of the carbon layer can be controlled by adjusting reaction conditions. The rationally designed porosity and carbon layer of NPSi@C can improve electronic conductivity and buffer volume change of Si without destroying the carbon layer or disrupting the solid electrolyte interface layer. The optimized NPSi@C anode shows a stable cyclability with 0.00685% capacity decay per cycle at 5 A g−1 over 2000 cycles for LIBs. The energy storage mechanism is explored by quantitative kinetics analysis and proven to be a capacitance‐battery dual model. Moreover, a novel 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds, NPSi@C can induce uniform Li deposition with buffered volume expansion, which is proven by exploring Li‐metal deposition morphology on Cu foil and MXene@NPSi@C. The practical potential application of NPSi@C and MXene@NPSi@C is evaluated by full cell tests with a Li(Ni0.8Co0.1Mn0.1)O2 cathode.
Uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated as an anode for lithium‐ion batteries. The porosity of Si, graphitization degree, and thickness of carbon layer can be controlled by adjusting reaction conditions. Moreover, a 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds for Li‐metal anode, NPSi@C can induce uniform Li deposition with buffered volume expansion.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201908721</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5683-849X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-02, Vol.30 (9), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2363710057 |
source | Wiley Journals |
subjects | Anodes Buffers Carbon Commercialization Conjugation controlled fabrication Copper Decay rate Dendritic structure Deposition Disruption Electrical resistivity Energy storage Graphitization Lithium Lithium batteries Lithium-ion batteries lithium‐metal batteries Materials science Metal foils Morphology MXene MXenes Nucleation Porosity Reaction kinetics Silicon silicon@carbon anodes Solid electrolytes Thickness Three dimensional models Two dimensional models |
title | Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porosity%E2%80%90%20and%20Graphitization%E2%80%90Controlled%20Fabrication%20of%20Nanoporous%20Silicon@Carbon%20for%20Lithium%20Storage%20and%20Its%20Conjugation%20with%20MXene%20for%20Lithium%E2%80%90Metal%20Anode&rft.jtitle=Advanced%20functional%20materials&rft.au=An,%20Yongling&rft.date=2020-02-01&rft.volume=30&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201908721&rft_dat=%3Cproquest_cross%3E2363710057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363710057&rft_id=info:pmid/&rfr_iscdi=true |