Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode

Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-02, Vol.30 (9), p.n/a
Hauptverfasser: An, Yongling, Tian, Yuan, Wei, Hao, Xi, Baojuan, Xiong, Shenglin, Feng, Jinkui, Qian, Yitai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced functional materials
container_volume 30
creator An, Yongling
Tian, Yuan
Wei, Hao
Xi, Baojuan
Xiong, Shenglin
Feng, Jinkui
Qian, Yitai
description Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated and tested as a stable anode for lithium‐ion batteries (LIBs). The porosity of Si as well as graphitization degree and thickness of the carbon layer can be controlled by adjusting reaction conditions. The rationally designed porosity and carbon layer of NPSi@C can improve electronic conductivity and buffer volume change of Si without destroying the carbon layer or disrupting the solid electrolyte interface layer. The optimized NPSi@C anode shows a stable cyclability with 0.00685% capacity decay per cycle at 5 A g−1 over 2000 cycles for LIBs. The energy storage mechanism is explored by quantitative kinetics analysis and proven to be a capacitance‐battery dual model. Moreover, a novel 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds, NPSi@C can induce uniform Li deposition with buffered volume expansion, which is proven by exploring Li‐metal deposition morphology on Cu foil and MXene@NPSi@C. The practical potential application of NPSi@C and MXene@NPSi@C is evaluated by full cell tests with a Li(Ni0.8Co0.1Mn0.1)O2 cathode. Uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated as an anode for lithium‐ion batteries. The porosity of Si, graphitization degree, and thickness of carbon layer can be controlled by adjusting reaction conditions. Moreover, a 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds for Li‐metal anode, NPSi@C can induce uniform Li deposition with buffered volume expansion.
doi_str_mv 10.1002/adfm.201908721
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2363710057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363710057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3561-4beee8357c0d1cc82021add89933256b053849b70eb1ea5a3052c44e97d6d96e3</originalsourceid><addsrcrecordid>eNqFkc9Kw0AQxoMoWKtXzwueU_dP_t4s0dZCq0IVegub7KTdkmbrZkOpJx_BV_DVfBK3jVRvnmaY-X7fwHyOc0lwj2BMr7koVj2KSYyjkJIjp0MCErgM0-j40JPZqXNW10uMSRgyr-N8Pimtamm2X-8fiFcCDTVfL6SRb9xIVdlpoiqjVVmCQAOeaZnvF0gV6IFXam3xpkZTWcpcVTcJ15ldFkqjsTQL2azQ1CjN57A3H5kaWb9lM29NNlaDJjOo4C9ij07A8BL1KyXg3DkpeFnDxU_tOi-Du-fk3h0_DkdJf-zmzA-I62UAEDE_zLEgeR5RTAkXIopjxqgfZNhnkRdnIYaMAPc5wz7NPQ_iUAQiDoB1navWd63VawO1SZeq0ZU9mVIWsND-2A-tqteqcvu2WkORrrVccb1NCU53MaS7GNJDDBaIW2AjS9j-o077t4PJL_sNabCRvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363710057</pqid></control><display><type>article</type><title>Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode</title><source>Wiley Journals</source><creator>An, Yongling ; Tian, Yuan ; Wei, Hao ; Xi, Baojuan ; Xiong, Shenglin ; Feng, Jinkui ; Qian, Yitai</creator><creatorcontrib>An, Yongling ; Tian, Yuan ; Wei, Hao ; Xi, Baojuan ; Xiong, Shenglin ; Feng, Jinkui ; Qian, Yitai</creatorcontrib><description>Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated and tested as a stable anode for lithium‐ion batteries (LIBs). The porosity of Si as well as graphitization degree and thickness of the carbon layer can be controlled by adjusting reaction conditions. The rationally designed porosity and carbon layer of NPSi@C can improve electronic conductivity and buffer volume change of Si without destroying the carbon layer or disrupting the solid electrolyte interface layer. The optimized NPSi@C anode shows a stable cyclability with 0.00685% capacity decay per cycle at 5 A g−1 over 2000 cycles for LIBs. The energy storage mechanism is explored by quantitative kinetics analysis and proven to be a capacitance‐battery dual model. Moreover, a novel 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds, NPSi@C can induce uniform Li deposition with buffered volume expansion, which is proven by exploring Li‐metal deposition morphology on Cu foil and MXene@NPSi@C. The practical potential application of NPSi@C and MXene@NPSi@C is evaluated by full cell tests with a Li(Ni0.8Co0.1Mn0.1)O2 cathode. Uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated as an anode for lithium‐ion batteries. The porosity of Si, graphitization degree, and thickness of carbon layer can be controlled by adjusting reaction conditions. Moreover, a 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds for Li‐metal anode, NPSi@C can induce uniform Li deposition with buffered volume expansion.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201908721</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Buffers ; Carbon ; Commercialization ; Conjugation ; controlled fabrication ; Copper ; Decay rate ; Dendritic structure ; Deposition ; Disruption ; Electrical resistivity ; Energy storage ; Graphitization ; Lithium ; Lithium batteries ; Lithium-ion batteries ; lithium‐metal batteries ; Materials science ; Metal foils ; Morphology ; MXene ; MXenes ; Nucleation ; Porosity ; Reaction kinetics ; Silicon ; silicon@carbon anodes ; Solid electrolytes ; Thickness ; Three dimensional models ; Two dimensional models</subject><ispartof>Advanced functional materials, 2020-02, Vol.30 (9), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3561-4beee8357c0d1cc82021add89933256b053849b70eb1ea5a3052c44e97d6d96e3</citedby><cites>FETCH-LOGICAL-c3561-4beee8357c0d1cc82021add89933256b053849b70eb1ea5a3052c44e97d6d96e3</cites><orcidid>0000-0002-5683-849X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201908721$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201908721$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>An, Yongling</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Xi, Baojuan</creatorcontrib><creatorcontrib>Xiong, Shenglin</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><title>Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode</title><title>Advanced functional materials</title><description>Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated and tested as a stable anode for lithium‐ion batteries (LIBs). The porosity of Si as well as graphitization degree and thickness of the carbon layer can be controlled by adjusting reaction conditions. The rationally designed porosity and carbon layer of NPSi@C can improve electronic conductivity and buffer volume change of Si without destroying the carbon layer or disrupting the solid electrolyte interface layer. The optimized NPSi@C anode shows a stable cyclability with 0.00685% capacity decay per cycle at 5 A g−1 over 2000 cycles for LIBs. The energy storage mechanism is explored by quantitative kinetics analysis and proven to be a capacitance‐battery dual model. Moreover, a novel 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds, NPSi@C can induce uniform Li deposition with buffered volume expansion, which is proven by exploring Li‐metal deposition morphology on Cu foil and MXene@NPSi@C. The practical potential application of NPSi@C and MXene@NPSi@C is evaluated by full cell tests with a Li(Ni0.8Co0.1Mn0.1)O2 cathode. Uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated as an anode for lithium‐ion batteries. The porosity of Si, graphitization degree, and thickness of carbon layer can be controlled by adjusting reaction conditions. Moreover, a 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds for Li‐metal anode, NPSi@C can induce uniform Li deposition with buffered volume expansion.</description><subject>Anodes</subject><subject>Buffers</subject><subject>Carbon</subject><subject>Commercialization</subject><subject>Conjugation</subject><subject>controlled fabrication</subject><subject>Copper</subject><subject>Decay rate</subject><subject>Dendritic structure</subject><subject>Deposition</subject><subject>Disruption</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>Graphitization</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>lithium‐metal batteries</subject><subject>Materials science</subject><subject>Metal foils</subject><subject>Morphology</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nucleation</subject><subject>Porosity</subject><subject>Reaction kinetics</subject><subject>Silicon</subject><subject>silicon@carbon anodes</subject><subject>Solid electrolytes</subject><subject>Thickness</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc9Kw0AQxoMoWKtXzwueU_dP_t4s0dZCq0IVegub7KTdkmbrZkOpJx_BV_DVfBK3jVRvnmaY-X7fwHyOc0lwj2BMr7koVj2KSYyjkJIjp0MCErgM0-j40JPZqXNW10uMSRgyr-N8Pimtamm2X-8fiFcCDTVfL6SRb9xIVdlpoiqjVVmCQAOeaZnvF0gV6IFXam3xpkZTWcpcVTcJ15ldFkqjsTQL2azQ1CjN57A3H5kaWb9lM29NNlaDJjOo4C9ij07A8BL1KyXg3DkpeFnDxU_tOi-Du-fk3h0_DkdJf-zmzA-I62UAEDE_zLEgeR5RTAkXIopjxqgfZNhnkRdnIYaMAPc5wz7NPQ_iUAQiDoB1navWd63VawO1SZeq0ZU9mVIWsND-2A-tqteqcvu2WkORrrVccb1NCU53MaS7GNJDDBaIW2AjS9j-o077t4PJL_sNabCRvg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>An, Yongling</creator><creator>Tian, Yuan</creator><creator>Wei, Hao</creator><creator>Xi, Baojuan</creator><creator>Xiong, Shenglin</creator><creator>Feng, Jinkui</creator><creator>Qian, Yitai</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5683-849X</orcidid></search><sort><creationdate>20200201</creationdate><title>Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode</title><author>An, Yongling ; Tian, Yuan ; Wei, Hao ; Xi, Baojuan ; Xiong, Shenglin ; Feng, Jinkui ; Qian, Yitai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3561-4beee8357c0d1cc82021add89933256b053849b70eb1ea5a3052c44e97d6d96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anodes</topic><topic>Buffers</topic><topic>Carbon</topic><topic>Commercialization</topic><topic>Conjugation</topic><topic>controlled fabrication</topic><topic>Copper</topic><topic>Decay rate</topic><topic>Dendritic structure</topic><topic>Deposition</topic><topic>Disruption</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>Graphitization</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>lithium‐metal batteries</topic><topic>Materials science</topic><topic>Metal foils</topic><topic>Morphology</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nucleation</topic><topic>Porosity</topic><topic>Reaction kinetics</topic><topic>Silicon</topic><topic>silicon@carbon anodes</topic><topic>Solid electrolytes</topic><topic>Thickness</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Yongling</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Xi, Baojuan</creatorcontrib><creatorcontrib>Xiong, Shenglin</creatorcontrib><creatorcontrib>Feng, Jinkui</creatorcontrib><creatorcontrib>Qian, Yitai</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Yongling</au><au>Tian, Yuan</au><au>Wei, Hao</au><au>Xi, Baojuan</au><au>Xiong, Shenglin</au><au>Feng, Jinkui</au><au>Qian, Yitai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode</atitle><jtitle>Advanced functional materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>30</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated and tested as a stable anode for lithium‐ion batteries (LIBs). The porosity of Si as well as graphitization degree and thickness of the carbon layer can be controlled by adjusting reaction conditions. The rationally designed porosity and carbon layer of NPSi@C can improve electronic conductivity and buffer volume change of Si without destroying the carbon layer or disrupting the solid electrolyte interface layer. The optimized NPSi@C anode shows a stable cyclability with 0.00685% capacity decay per cycle at 5 A g−1 over 2000 cycles for LIBs. The energy storage mechanism is explored by quantitative kinetics analysis and proven to be a capacitance‐battery dual model. Moreover, a novel 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds, NPSi@C can induce uniform Li deposition with buffered volume expansion, which is proven by exploring Li‐metal deposition morphology on Cu foil and MXene@NPSi@C. The practical potential application of NPSi@C and MXene@NPSi@C is evaluated by full cell tests with a Li(Ni0.8Co0.1Mn0.1)O2 cathode. Uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated as an anode for lithium‐ion batteries. The porosity of Si, graphitization degree, and thickness of carbon layer can be controlled by adjusting reaction conditions. Moreover, a 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds for Li‐metal anode, NPSi@C can induce uniform Li deposition with buffered volume expansion.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201908721</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5683-849X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-02, Vol.30 (9), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2363710057
source Wiley Journals
subjects Anodes
Buffers
Carbon
Commercialization
Conjugation
controlled fabrication
Copper
Decay rate
Dendritic structure
Deposition
Disruption
Electrical resistivity
Energy storage
Graphitization
Lithium
Lithium batteries
Lithium-ion batteries
lithium‐metal batteries
Materials science
Metal foils
Morphology
MXene
MXenes
Nucleation
Porosity
Reaction kinetics
Silicon
silicon@carbon anodes
Solid electrolytes
Thickness
Three dimensional models
Two dimensional models
title Porosity‐ and Graphitization‐Controlled Fabrication of Nanoporous Silicon@Carbon for Lithium Storage and Its Conjugation with MXene for Lithium‐Metal Anode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porosity%E2%80%90%20and%20Graphitization%E2%80%90Controlled%20Fabrication%20of%20Nanoporous%20Silicon@Carbon%20for%20Lithium%20Storage%20and%20Its%20Conjugation%20with%20MXene%20for%20Lithium%E2%80%90Metal%20Anode&rft.jtitle=Advanced%20functional%20materials&rft.au=An,%20Yongling&rft.date=2020-02-01&rft.volume=30&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201908721&rft_dat=%3Cproquest_cross%3E2363710057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363710057&rft_id=info:pmid/&rfr_iscdi=true