Apparent Potential Difference Boosting Directional Electron Transfer for Full Solar Spectrum‐Irradiated Catalytic H2 Evolution

Directional charge transfer among nanolayers of graphitic carbon nitride (g‐C3N4) is still inefficient because of the interlayer electrostatic potential barrier, which tremendously restricts the utilization of charges in conversion of solar energy into fuel. Herein, an apparent potential among nanol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-02, Vol.30 (9), p.n/a
Hauptverfasser: Lin, Zhexing, Zhao, Yan, Luo, Jinhua, Jiang, Shujuan, Sun, Chuanzhi, Song, Shaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced functional materials
container_volume 30
creator Lin, Zhexing
Zhao, Yan
Luo, Jinhua
Jiang, Shujuan
Sun, Chuanzhi
Song, Shaoqing
description Directional charge transfer among nanolayers of graphitic carbon nitride (g‐C3N4) is still inefficient because of the interlayer electrostatic potential barrier, which tremendously restricts the utilization of charges in conversion of solar energy into fuel. Herein, an apparent potential among nanolayers is introduced to boost interlayer electron transfer by curving planar g‐C3N4 nanosheets into carbon nitride square tubes (C3N4Ts), and Ni2P nanoparticles as electron acceptors are loaded on C3N4Ts (Ni2P/C3N4Ts) for highly efficient H2 evolution. Study results present H2‐evolution efficiency over the constructed Ni2P/C3N4Ts up to 19.25 mmol g−1 h−1 with a large number of visible H2 bubbles, which is more than 1.9 and 2.6 times of that over g‐C3N4 supported 1 wt%Pt and 3 wt%Pd, respectively. Density functional theory (DFT) and characterizations reveal efficient directional transfer through C3N4T interlayer (001) to Ni2P (111) is achieved under the apparent potential difference of C3N4Ts, which therefore ensures the high H2‐evolution performance of Ni2P/C3N4Ts. These results in the field of material engineering supply a novel strategy to boost directional charge transfer for solar energy conversion efficiency by introducing apparent potential difference. An apparent potential difference among nanolayers of g‐C3N4 nanosheets is introduced to boost interlayer electron transfer by curving planar g‐C3N4 into carbon nitride square tubes, and Ni2P nanoparticles as electron acceptors are loaded on C3N4Ts for efficient H2 evolution with a large number of visible H2 bubbles.
doi_str_mv 10.1002/adfm.201908797
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2363709348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363709348</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2707-10fc2f9ce6d57f959dd8949c077969194fb89ec0b3336b0fe8fc100cb9a8fbe33</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKtb1wHXU5NJO5ksa39soaLQCu5CJpOUlHQyZjJKd30En9EnMUOlq3vuuYcD9wPgHqMBRih9FKXeD1KEGcopoxeghzOcJQSl-eVZ449rcNM0O4QwpWTYA8dxXQuvqgDfXIjDCAunRmsVPangk3NNMNU2el7JYFwV7zMbpXcV3HhRNTEKtfNw3loL184KD9d1F2j3v8efpfeiNCKoEk5EEPYQjISLFM6-nG27vltwpYVt1N3_7IP3-WwzWSSr1-flZLxKtilFNMFIy1QzqbJyRDUbsbLM2ZBJRCnLGGZDXeRMSVQQQrICaZVrGanIgolcF4qQPng49dbefbaqCXznWh_faXhKMkIRI8M8ptgp9W2sOvDam73wB44R7xDzDjE_I-bj6fzlvJE_Dzp1nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363709348</pqid></control><display><type>article</type><title>Apparent Potential Difference Boosting Directional Electron Transfer for Full Solar Spectrum‐Irradiated Catalytic H2 Evolution</title><source>Access via Wiley Online Library</source><creator>Lin, Zhexing ; Zhao, Yan ; Luo, Jinhua ; Jiang, Shujuan ; Sun, Chuanzhi ; Song, Shaoqing</creator><creatorcontrib>Lin, Zhexing ; Zhao, Yan ; Luo, Jinhua ; Jiang, Shujuan ; Sun, Chuanzhi ; Song, Shaoqing</creatorcontrib><description>Directional charge transfer among nanolayers of graphitic carbon nitride (g‐C3N4) is still inefficient because of the interlayer electrostatic potential barrier, which tremendously restricts the utilization of charges in conversion of solar energy into fuel. Herein, an apparent potential among nanolayers is introduced to boost interlayer electron transfer by curving planar g‐C3N4 nanosheets into carbon nitride square tubes (C3N4Ts), and Ni2P nanoparticles as electron acceptors are loaded on C3N4Ts (Ni2P/C3N4Ts) for highly efficient H2 evolution. Study results present H2‐evolution efficiency over the constructed Ni2P/C3N4Ts up to 19.25 mmol g−1 h−1 with a large number of visible H2 bubbles, which is more than 1.9 and 2.6 times of that over g‐C3N4 supported 1 wt%Pt and 3 wt%Pd, respectively. Density functional theory (DFT) and characterizations reveal efficient directional transfer through C3N4T interlayer (001) to Ni2P (111) is achieved under the apparent potential difference of C3N4Ts, which therefore ensures the high H2‐evolution performance of Ni2P/C3N4Ts. These results in the field of material engineering supply a novel strategy to boost directional charge transfer for solar energy conversion efficiency by introducing apparent potential difference. An apparent potential difference among nanolayers of g‐C3N4 nanosheets is introduced to boost interlayer electron transfer by curving planar g‐C3N4 into carbon nitride square tubes, and Ni2P nanoparticles as electron acceptors are loaded on C3N4Ts for efficient H2 evolution with a large number of visible H2 bubbles.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201908797</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>apparent potential difference ; Carbon ; Carbon nitride ; Charge transfer ; Density functional theory ; directional electron transfer ; Electron transfer ; Electrons ; Energy conversion efficiency ; g‐C3N4 ; H2 energy ; H2O splitting ; Hydrogen evolution ; Interlayers ; Materials science ; Nanoparticles ; Palladium ; Photovoltaic cells ; Platinum ; Potential barriers ; Solar energy ; Solar energy conversion ; Tubes</subject><ispartof>Advanced functional materials, 2020-02, Vol.30 (9), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8492-2808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201908797$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201908797$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lin, Zhexing</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Luo, Jinhua</creatorcontrib><creatorcontrib>Jiang, Shujuan</creatorcontrib><creatorcontrib>Sun, Chuanzhi</creatorcontrib><creatorcontrib>Song, Shaoqing</creatorcontrib><title>Apparent Potential Difference Boosting Directional Electron Transfer for Full Solar Spectrum‐Irradiated Catalytic H2 Evolution</title><title>Advanced functional materials</title><description>Directional charge transfer among nanolayers of graphitic carbon nitride (g‐C3N4) is still inefficient because of the interlayer electrostatic potential barrier, which tremendously restricts the utilization of charges in conversion of solar energy into fuel. Herein, an apparent potential among nanolayers is introduced to boost interlayer electron transfer by curving planar g‐C3N4 nanosheets into carbon nitride square tubes (C3N4Ts), and Ni2P nanoparticles as electron acceptors are loaded on C3N4Ts (Ni2P/C3N4Ts) for highly efficient H2 evolution. Study results present H2‐evolution efficiency over the constructed Ni2P/C3N4Ts up to 19.25 mmol g−1 h−1 with a large number of visible H2 bubbles, which is more than 1.9 and 2.6 times of that over g‐C3N4 supported 1 wt%Pt and 3 wt%Pd, respectively. Density functional theory (DFT) and characterizations reveal efficient directional transfer through C3N4T interlayer (001) to Ni2P (111) is achieved under the apparent potential difference of C3N4Ts, which therefore ensures the high H2‐evolution performance of Ni2P/C3N4Ts. These results in the field of material engineering supply a novel strategy to boost directional charge transfer for solar energy conversion efficiency by introducing apparent potential difference. An apparent potential difference among nanolayers of g‐C3N4 nanosheets is introduced to boost interlayer electron transfer by curving planar g‐C3N4 into carbon nitride square tubes, and Ni2P nanoparticles as electron acceptors are loaded on C3N4Ts for efficient H2 evolution with a large number of visible H2 bubbles.</description><subject>apparent potential difference</subject><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Charge transfer</subject><subject>Density functional theory</subject><subject>directional electron transfer</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Energy conversion efficiency</subject><subject>g‐C3N4</subject><subject>H2 energy</subject><subject>H2O splitting</subject><subject>Hydrogen evolution</subject><subject>Interlayers</subject><subject>Materials science</subject><subject>Nanoparticles</subject><subject>Palladium</subject><subject>Photovoltaic cells</subject><subject>Platinum</subject><subject>Potential barriers</subject><subject>Solar energy</subject><subject>Solar energy conversion</subject><subject>Tubes</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKtb1wHXU5NJO5ksa39soaLQCu5CJpOUlHQyZjJKd30En9EnMUOlq3vuuYcD9wPgHqMBRih9FKXeD1KEGcopoxeghzOcJQSl-eVZ449rcNM0O4QwpWTYA8dxXQuvqgDfXIjDCAunRmsVPangk3NNMNU2el7JYFwV7zMbpXcV3HhRNTEKtfNw3loL184KD9d1F2j3v8efpfeiNCKoEk5EEPYQjISLFM6-nG27vltwpYVt1N3_7IP3-WwzWSSr1-flZLxKtilFNMFIy1QzqbJyRDUbsbLM2ZBJRCnLGGZDXeRMSVQQQrICaZVrGanIgolcF4qQPng49dbefbaqCXznWh_faXhKMkIRI8M8ptgp9W2sOvDam73wB44R7xDzDjE_I-bj6fzlvJE_Dzp1nw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Lin, Zhexing</creator><creator>Zhao, Yan</creator><creator>Luo, Jinhua</creator><creator>Jiang, Shujuan</creator><creator>Sun, Chuanzhi</creator><creator>Song, Shaoqing</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8492-2808</orcidid></search><sort><creationdate>20200201</creationdate><title>Apparent Potential Difference Boosting Directional Electron Transfer for Full Solar Spectrum‐Irradiated Catalytic H2 Evolution</title><author>Lin, Zhexing ; Zhao, Yan ; Luo, Jinhua ; Jiang, Shujuan ; Sun, Chuanzhi ; Song, Shaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2707-10fc2f9ce6d57f959dd8949c077969194fb89ec0b3336b0fe8fc100cb9a8fbe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>apparent potential difference</topic><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Charge transfer</topic><topic>Density functional theory</topic><topic>directional electron transfer</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Energy conversion efficiency</topic><topic>g‐C3N4</topic><topic>H2 energy</topic><topic>H2O splitting</topic><topic>Hydrogen evolution</topic><topic>Interlayers</topic><topic>Materials science</topic><topic>Nanoparticles</topic><topic>Palladium</topic><topic>Photovoltaic cells</topic><topic>Platinum</topic><topic>Potential barriers</topic><topic>Solar energy</topic><topic>Solar energy conversion</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhexing</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Luo, Jinhua</creatorcontrib><creatorcontrib>Jiang, Shujuan</creatorcontrib><creatorcontrib>Sun, Chuanzhi</creatorcontrib><creatorcontrib>Song, Shaoqing</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zhexing</au><au>Zhao, Yan</au><au>Luo, Jinhua</au><au>Jiang, Shujuan</au><au>Sun, Chuanzhi</au><au>Song, Shaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apparent Potential Difference Boosting Directional Electron Transfer for Full Solar Spectrum‐Irradiated Catalytic H2 Evolution</atitle><jtitle>Advanced functional materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>30</volume><issue>9</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Directional charge transfer among nanolayers of graphitic carbon nitride (g‐C3N4) is still inefficient because of the interlayer electrostatic potential barrier, which tremendously restricts the utilization of charges in conversion of solar energy into fuel. Herein, an apparent potential among nanolayers is introduced to boost interlayer electron transfer by curving planar g‐C3N4 nanosheets into carbon nitride square tubes (C3N4Ts), and Ni2P nanoparticles as electron acceptors are loaded on C3N4Ts (Ni2P/C3N4Ts) for highly efficient H2 evolution. Study results present H2‐evolution efficiency over the constructed Ni2P/C3N4Ts up to 19.25 mmol g−1 h−1 with a large number of visible H2 bubbles, which is more than 1.9 and 2.6 times of that over g‐C3N4 supported 1 wt%Pt and 3 wt%Pd, respectively. Density functional theory (DFT) and characterizations reveal efficient directional transfer through C3N4T interlayer (001) to Ni2P (111) is achieved under the apparent potential difference of C3N4Ts, which therefore ensures the high H2‐evolution performance of Ni2P/C3N4Ts. These results in the field of material engineering supply a novel strategy to boost directional charge transfer for solar energy conversion efficiency by introducing apparent potential difference. An apparent potential difference among nanolayers of g‐C3N4 nanosheets is introduced to boost interlayer electron transfer by curving planar g‐C3N4 into carbon nitride square tubes, and Ni2P nanoparticles as electron acceptors are loaded on C3N4Ts for efficient H2 evolution with a large number of visible H2 bubbles.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201908797</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8492-2808</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-02, Vol.30 (9), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2363709348
source Access via Wiley Online Library
subjects apparent potential difference
Carbon
Carbon nitride
Charge transfer
Density functional theory
directional electron transfer
Electron transfer
Electrons
Energy conversion efficiency
g‐C3N4
H2 energy
H2O splitting
Hydrogen evolution
Interlayers
Materials science
Nanoparticles
Palladium
Photovoltaic cells
Platinum
Potential barriers
Solar energy
Solar energy conversion
Tubes
title Apparent Potential Difference Boosting Directional Electron Transfer for Full Solar Spectrum‐Irradiated Catalytic H2 Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apparent%20Potential%20Difference%20Boosting%20Directional%20Electron%20Transfer%20for%20Full%20Solar%20Spectrum%E2%80%90Irradiated%20Catalytic%20H2%20Evolution&rft.jtitle=Advanced%20functional%20materials&rft.au=Lin,%20Zhexing&rft.date=2020-02-01&rft.volume=30&rft.issue=9&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201908797&rft_dat=%3Cproquest_wiley%3E2363709348%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363709348&rft_id=info:pmid/&rfr_iscdi=true