Structure and stability of shock waves in granular gases

Previous experiments have revealed that shock waves driven through dissipative media may become unstable, for example, in granular gases, and in molecular gases undergoing strong relaxation effects. The current paper addresses this problem of shock stability at the Euler and Navier–Stokes continuum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-08, Vol.873, p.568-607
Hauptverfasser: Sirmas, Nick, Radulescu, Matei I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 607
container_issue
container_start_page 568
container_title Journal of fluid mechanics
container_volume 873
creator Sirmas, Nick
Radulescu, Matei I.
description Previous experiments have revealed that shock waves driven through dissipative media may become unstable, for example, in granular gases, and in molecular gases undergoing strong relaxation effects. The current paper addresses this problem of shock stability at the Euler and Navier–Stokes continuum levels in a system of disks (two-dimensional) undergoing activated inelastic collisions. The dynamics of shock formation and stability is found to be in very good agreement with earlier molecular dynamic simulations (Sirmas & Radulescu, Phys. Rev. E, vol. 91, 2015, 023003). It was found that the modelling of shock instability requires the introduction of molecular noise for its development and sustenance. This is confirmed in two stability problems. In the first, the evolution of shock formation dynamics is monitored without noise, with only initial noise and with continuous molecular noise. Only the latter reproduces the results of shock instability of molecular dynamics simulations. In the second problem, the steady travelling wave solution is obtained for the shock structure in the inviscid and viscous limits and its nonlinear stability is studied with and without molecular fluctuations, again showing that instability can be sustained only in the presence of fluctuations. The continuum results show that instability takes the form of a rippled front of a wavelength comparable with the relaxation thickness of the steady shock wave, at scales at which molecular fluctuations become important, in excellent agreement with the molecular dynamic simulations.
doi_str_mv 10.1017/jfm.2019.345
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2363231362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2019_345</cupid><sourcerecordid>2363231362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-1220502c01052e011d5004124bf28b3424da06f990649eafe6c927d47caebafd3</originalsourceid><addsrcrecordid>eNptkD1PwzAURS0EEqWw8QMssZLw3rPj1COq-JIqMQCz5Th2SWmTYieg_ntSUYmF6S7n3isdxi4RcgQsb1ZhkxOgzoUsjtgEpdJZqWRxzCYARBkiwSk7S2kFgAJ0OWGzlz4Orh-i57ateept1aybfse7wNN75z74t_3yiTctX0bbDmsb-dImn87ZSbDr5C8OOWVv93ev88ds8fzwNL9dZE6U1GdIBAWQA4SCPCDWBYBEklWgWSUkydqCClqDktrb4JXTVNaydNZXNtRiyq5-d7ex-xx86s2qG2I7XhoSSpBAoWikrn8pF7uUog9mG5uNjTuDYPZuzOjG7N2Y0c2I5wfcbqrY1Ev_t_pv4QfgQWTS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363231362</pqid></control><display><type>article</type><title>Structure and stability of shock waves in granular gases</title><source>Cambridge University Press Journals Complete</source><creator>Sirmas, Nick ; Radulescu, Matei I.</creator><creatorcontrib>Sirmas, Nick ; Radulescu, Matei I.</creatorcontrib><description>Previous experiments have revealed that shock waves driven through dissipative media may become unstable, for example, in granular gases, and in molecular gases undergoing strong relaxation effects. The current paper addresses this problem of shock stability at the Euler and Navier–Stokes continuum levels in a system of disks (two-dimensional) undergoing activated inelastic collisions. The dynamics of shock formation and stability is found to be in very good agreement with earlier molecular dynamic simulations (Sirmas &amp; Radulescu, Phys. Rev. E, vol. 91, 2015, 023003). It was found that the modelling of shock instability requires the introduction of molecular noise for its development and sustenance. This is confirmed in two stability problems. In the first, the evolution of shock formation dynamics is monitored without noise, with only initial noise and with continuous molecular noise. Only the latter reproduces the results of shock instability of molecular dynamics simulations. In the second problem, the steady travelling wave solution is obtained for the shock structure in the inviscid and viscous limits and its nonlinear stability is studied with and without molecular fluctuations, again showing that instability can be sustained only in the presence of fluctuations. The continuum results show that instability takes the form of a rippled front of a wavelength comparable with the relaxation thickness of the steady shock wave, at scales at which molecular fluctuations become important, in excellent agreement with the molecular dynamic simulations.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.345</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Computational fluid dynamics ; Computer simulation ; Dimensional stability ; Disks ; Dynamic stability ; Dynamics ; Energy ; Equilibrium ; Fluctuations ; Gases ; Granular materials ; Inelastic collisions ; Instability ; JFM Papers ; Molecular dynamics ; Molecular gases ; Noise ; Noise monitoring ; Shock waves ; Simulation ; Structural stability ; Traveling waves ; Viscoelasticity ; Wavelength</subject><ispartof>Journal of fluid mechanics, 2019-08, Vol.873, p.568-607</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-1220502c01052e011d5004124bf28b3424da06f990649eafe6c927d47caebafd3</citedby><cites>FETCH-LOGICAL-c372t-1220502c01052e011d5004124bf28b3424da06f990649eafe6c927d47caebafd3</cites><orcidid>0000-0002-2752-9313 ; 0000-0002-7775-7963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112019003458/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,781,785,27929,27930,55633</link.rule.ids></links><search><creatorcontrib>Sirmas, Nick</creatorcontrib><creatorcontrib>Radulescu, Matei I.</creatorcontrib><title>Structure and stability of shock waves in granular gases</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Previous experiments have revealed that shock waves driven through dissipative media may become unstable, for example, in granular gases, and in molecular gases undergoing strong relaxation effects. The current paper addresses this problem of shock stability at the Euler and Navier–Stokes continuum levels in a system of disks (two-dimensional) undergoing activated inelastic collisions. The dynamics of shock formation and stability is found to be in very good agreement with earlier molecular dynamic simulations (Sirmas &amp; Radulescu, Phys. Rev. E, vol. 91, 2015, 023003). It was found that the modelling of shock instability requires the introduction of molecular noise for its development and sustenance. This is confirmed in two stability problems. In the first, the evolution of shock formation dynamics is monitored without noise, with only initial noise and with continuous molecular noise. Only the latter reproduces the results of shock instability of molecular dynamics simulations. In the second problem, the steady travelling wave solution is obtained for the shock structure in the inviscid and viscous limits and its nonlinear stability is studied with and without molecular fluctuations, again showing that instability can be sustained only in the presence of fluctuations. The continuum results show that instability takes the form of a rippled front of a wavelength comparable with the relaxation thickness of the steady shock wave, at scales at which molecular fluctuations become important, in excellent agreement with the molecular dynamic simulations.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dimensional stability</subject><subject>Disks</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Fluctuations</subject><subject>Gases</subject><subject>Granular materials</subject><subject>Inelastic collisions</subject><subject>Instability</subject><subject>JFM Papers</subject><subject>Molecular dynamics</subject><subject>Molecular gases</subject><subject>Noise</subject><subject>Noise monitoring</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Structural stability</subject><subject>Traveling waves</subject><subject>Viscoelasticity</subject><subject>Wavelength</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAURS0EEqWw8QMssZLw3rPj1COq-JIqMQCz5Th2SWmTYieg_ntSUYmF6S7n3isdxi4RcgQsb1ZhkxOgzoUsjtgEpdJZqWRxzCYARBkiwSk7S2kFgAJ0OWGzlz4Orh-i57ateept1aybfse7wNN75z74t_3yiTctX0bbDmsb-dImn87ZSbDr5C8OOWVv93ev88ds8fzwNL9dZE6U1GdIBAWQA4SCPCDWBYBEklWgWSUkydqCClqDktrb4JXTVNaydNZXNtRiyq5-d7ex-xx86s2qG2I7XhoSSpBAoWikrn8pF7uUog9mG5uNjTuDYPZuzOjG7N2Y0c2I5wfcbqrY1Ev_t_pv4QfgQWTS</recordid><startdate>20190825</startdate><enddate>20190825</enddate><creator>Sirmas, Nick</creator><creator>Radulescu, Matei I.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2752-9313</orcidid><orcidid>https://orcid.org/0000-0002-7775-7963</orcidid></search><sort><creationdate>20190825</creationdate><title>Structure and stability of shock waves in granular gases</title><author>Sirmas, Nick ; Radulescu, Matei I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-1220502c01052e011d5004124bf28b3424da06f990649eafe6c927d47caebafd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dimensional stability</topic><topic>Disks</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Fluctuations</topic><topic>Gases</topic><topic>Granular materials</topic><topic>Inelastic collisions</topic><topic>Instability</topic><topic>JFM Papers</topic><topic>Molecular dynamics</topic><topic>Molecular gases</topic><topic>Noise</topic><topic>Noise monitoring</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Structural stability</topic><topic>Traveling waves</topic><topic>Viscoelasticity</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirmas, Nick</creatorcontrib><creatorcontrib>Radulescu, Matei I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirmas, Nick</au><au>Radulescu, Matei I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and stability of shock waves in granular gases</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-08-25</date><risdate>2019</risdate><volume>873</volume><spage>568</spage><epage>607</epage><pages>568-607</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Previous experiments have revealed that shock waves driven through dissipative media may become unstable, for example, in granular gases, and in molecular gases undergoing strong relaxation effects. The current paper addresses this problem of shock stability at the Euler and Navier–Stokes continuum levels in a system of disks (two-dimensional) undergoing activated inelastic collisions. The dynamics of shock formation and stability is found to be in very good agreement with earlier molecular dynamic simulations (Sirmas &amp; Radulescu, Phys. Rev. E, vol. 91, 2015, 023003). It was found that the modelling of shock instability requires the introduction of molecular noise for its development and sustenance. This is confirmed in two stability problems. In the first, the evolution of shock formation dynamics is monitored without noise, with only initial noise and with continuous molecular noise. Only the latter reproduces the results of shock instability of molecular dynamics simulations. In the second problem, the steady travelling wave solution is obtained for the shock structure in the inviscid and viscous limits and its nonlinear stability is studied with and without molecular fluctuations, again showing that instability can be sustained only in the presence of fluctuations. The continuum results show that instability takes the form of a rippled front of a wavelength comparable with the relaxation thickness of the steady shock wave, at scales at which molecular fluctuations become important, in excellent agreement with the molecular dynamic simulations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.345</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-2752-9313</orcidid><orcidid>https://orcid.org/0000-0002-7775-7963</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2019-08, Vol.873, p.568-607
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2363231362
source Cambridge University Press Journals Complete
subjects Computational fluid dynamics
Computer simulation
Dimensional stability
Disks
Dynamic stability
Dynamics
Energy
Equilibrium
Fluctuations
Gases
Granular materials
Inelastic collisions
Instability
JFM Papers
Molecular dynamics
Molecular gases
Noise
Noise monitoring
Shock waves
Simulation
Structural stability
Traveling waves
Viscoelasticity
Wavelength
title Structure and stability of shock waves in granular gases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20stability%20of%20shock%20waves%20in%20granular%20gases&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Sirmas,%20Nick&rft.date=2019-08-25&rft.volume=873&rft.spage=568&rft.epage=607&rft.pages=568-607&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.345&rft_dat=%3Cproquest_cross%3E2363231362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363231362&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2019_345&rfr_iscdi=true