Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries

Lithium-sulfur batteries have gotten a growing number of investigations because of its overwhelming superiority in theoretical energy density and cost. Nevertheless, the application process of lithium-sulfur batteries is severely obstructed by disadvantageous shuttle effect, which arises from the di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2020-02, Vol.334, p.135658, Article 135658
Hauptverfasser: Huang, Cheng, Sun, Tingting, Shu, Hongbo, Chen, Manfang, Liang, Qianqian, Zhou, Ying, Gao, Ping, Xu, Sheng, Yang, Xiukang, Wu, Minli, Jian, Jian, Wang, Xianyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 135658
container_title Electrochimica acta
container_volume 334
creator Huang, Cheng
Sun, Tingting
Shu, Hongbo
Chen, Manfang
Liang, Qianqian
Zhou, Ying
Gao, Ping
Xu, Sheng
Yang, Xiukang
Wu, Minli
Jian, Jian
Wang, Xianyou
description Lithium-sulfur batteries have gotten a growing number of investigations because of its overwhelming superiority in theoretical energy density and cost. Nevertheless, the application process of lithium-sulfur batteries is severely obstructed by disadvantageous shuttle effect, which arises from the dissolution and migration of intermediate polysulfides and its sluggish conversion kinetics. Herein, we design the conductivity-adsorption-catalysis reaction interface, which is constructed by growing NiCo2S4 nanoparticle on reduced graphene oxide (NiCo2S4@rGO), to afford chemical immobilization and conversion promotion of polysulfides. In this structure, rGO with excellent conductivity can ensure rapid electron transfer and well-distributed NiCo2S4 nanoparticles serve as high-efficiency active sites to anchor polysulfides and accelerate its conversion reaction. Thus, lithium-sulfur batteries with this multifunctional reaction interface deliver improved cycling stability with capacity retention rate of 76% after 500 cycles at 1 C. And a good initial capacity of 776 mAh g−1 is gained under high sulfur loading of 3.6 mg cm−2. This work supplies promising interface design strategies to enhance polysulfides redox kinetics and alleviate shuttle effect for high-performance lithium-sulfur batteries. [Display omitted] •A conductivity-adsorption-catalyze reaction interface is demonstrated.•The lyophilic property and polar surface is more conducive to the electrolyte infiltration and polysulfide adsorption.•NiCo2S4@rGO can effectively boost kinetics of polysulfide conversion reaction.•Using NiCo2S4@rGO in the interlayer exhibits excellent electrochemical performances especially under high sulfur loading.
doi_str_mv 10.1016/j.electacta.2020.135658
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2362976163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620300499</els_id><sourcerecordid>2362976163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-5f615bb0a50971fb0797925f998ff6375d82f7400b8bfb12fd1d86aa1b7b2f433</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI4-gwHXHZOmSdrlMPgHI250HZI0wZROU5N0YN7e1Ipb4cK9XM45cD4AbjHaYITZfbcxvdFJ5tmUqMxfQhmtz8AK15wUpKbNOVghhElRsZpdgqsYO4QQZxytgH-d-uTsNOjk_CB7GIz8OaEbkglWahOh9QFqOaYpGCiHFirvY4LaD0cT4qz1Fo6-P8Wpt6412Qp7lz7ddCjm1xSgkimnOROvwYWVfTQ3v3sNPh4f3nfPxf7t6WW33ReaVCQV1DJMlUKSooZjqxBveFNS2zS1tYxw2tal5RVCqlZW4dK2uK2ZlFhxVdqKkDW4W3LH4L8mE5Po_BRywShKwsqGM8xmFV9UOvgYg7FiDO4gw0lgJGa6ohN_dMVMVyx0s3O7OE0ucXQmiKidGbRpXch60Xr3b8Y3LwaJ8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362976163</pqid></control><display><type>article</type><title>Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Cheng ; Sun, Tingting ; Shu, Hongbo ; Chen, Manfang ; Liang, Qianqian ; Zhou, Ying ; Gao, Ping ; Xu, Sheng ; Yang, Xiukang ; Wu, Minli ; Jian, Jian ; Wang, Xianyou</creator><creatorcontrib>Huang, Cheng ; Sun, Tingting ; Shu, Hongbo ; Chen, Manfang ; Liang, Qianqian ; Zhou, Ying ; Gao, Ping ; Xu, Sheng ; Yang, Xiukang ; Wu, Minli ; Jian, Jian ; Wang, Xianyou</creatorcontrib><description>Lithium-sulfur batteries have gotten a growing number of investigations because of its overwhelming superiority in theoretical energy density and cost. Nevertheless, the application process of lithium-sulfur batteries is severely obstructed by disadvantageous shuttle effect, which arises from the dissolution and migration of intermediate polysulfides and its sluggish conversion kinetics. Herein, we design the conductivity-adsorption-catalysis reaction interface, which is constructed by growing NiCo2S4 nanoparticle on reduced graphene oxide (NiCo2S4@rGO), to afford chemical immobilization and conversion promotion of polysulfides. In this structure, rGO with excellent conductivity can ensure rapid electron transfer and well-distributed NiCo2S4 nanoparticles serve as high-efficiency active sites to anchor polysulfides and accelerate its conversion reaction. Thus, lithium-sulfur batteries with this multifunctional reaction interface deliver improved cycling stability with capacity retention rate of 76% after 500 cycles at 1 C. And a good initial capacity of 776 mAh g−1 is gained under high sulfur loading of 3.6 mg cm−2. This work supplies promising interface design strategies to enhance polysulfides redox kinetics and alleviate shuttle effect for high-performance lithium-sulfur batteries. [Display omitted] •A conductivity-adsorption-catalyze reaction interface is demonstrated.•The lyophilic property and polar surface is more conducive to the electrolyte infiltration and polysulfide adsorption.•NiCo2S4@rGO can effectively boost kinetics of polysulfide conversion reaction.•Using NiCo2S4@rGO in the interlayer exhibits excellent electrochemical performances especially under high sulfur loading.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.135658</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Chemical immobilization ; Conversion ; Electron transfer ; Flux density ; Graphene ; Interface stability ; Interfaces ; Lithium ; Lithium sulfur batteries ; Nanoparticles ; Organic chemistry ; Polysulfides ; Polysulfides conversion ; Reaction kinetics ; Shuttle effect</subject><ispartof>Electrochimica acta, 2020-02, Vol.334, p.135658, Article 135658</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 20, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-5f615bb0a50971fb0797925f998ff6375d82f7400b8bfb12fd1d86aa1b7b2f433</citedby><cites>FETCH-LOGICAL-c343t-5f615bb0a50971fb0797925f998ff6375d82f7400b8bfb12fd1d86aa1b7b2f433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468620300499$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Sun, Tingting</creatorcontrib><creatorcontrib>Shu, Hongbo</creatorcontrib><creatorcontrib>Chen, Manfang</creatorcontrib><creatorcontrib>Liang, Qianqian</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Yang, Xiukang</creatorcontrib><creatorcontrib>Wu, Minli</creatorcontrib><creatorcontrib>Jian, Jian</creatorcontrib><creatorcontrib>Wang, Xianyou</creatorcontrib><title>Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries</title><title>Electrochimica acta</title><description>Lithium-sulfur batteries have gotten a growing number of investigations because of its overwhelming superiority in theoretical energy density and cost. Nevertheless, the application process of lithium-sulfur batteries is severely obstructed by disadvantageous shuttle effect, which arises from the dissolution and migration of intermediate polysulfides and its sluggish conversion kinetics. Herein, we design the conductivity-adsorption-catalysis reaction interface, which is constructed by growing NiCo2S4 nanoparticle on reduced graphene oxide (NiCo2S4@rGO), to afford chemical immobilization and conversion promotion of polysulfides. In this structure, rGO with excellent conductivity can ensure rapid electron transfer and well-distributed NiCo2S4 nanoparticles serve as high-efficiency active sites to anchor polysulfides and accelerate its conversion reaction. Thus, lithium-sulfur batteries with this multifunctional reaction interface deliver improved cycling stability with capacity retention rate of 76% after 500 cycles at 1 C. And a good initial capacity of 776 mAh g−1 is gained under high sulfur loading of 3.6 mg cm−2. This work supplies promising interface design strategies to enhance polysulfides redox kinetics and alleviate shuttle effect for high-performance lithium-sulfur batteries. [Display omitted] •A conductivity-adsorption-catalyze reaction interface is demonstrated.•The lyophilic property and polar surface is more conducive to the electrolyte infiltration and polysulfide adsorption.•NiCo2S4@rGO can effectively boost kinetics of polysulfide conversion reaction.•Using NiCo2S4@rGO in the interlayer exhibits excellent electrochemical performances especially under high sulfur loading.</description><subject>Chemical immobilization</subject><subject>Conversion</subject><subject>Electron transfer</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Polysulfides</subject><subject>Polysulfides conversion</subject><subject>Reaction kinetics</subject><subject>Shuttle effect</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI4-gwHXHZOmSdrlMPgHI250HZI0wZROU5N0YN7e1Ipb4cK9XM45cD4AbjHaYITZfbcxvdFJ5tmUqMxfQhmtz8AK15wUpKbNOVghhElRsZpdgqsYO4QQZxytgH-d-uTsNOjk_CB7GIz8OaEbkglWahOh9QFqOaYpGCiHFirvY4LaD0cT4qz1Fo6-P8Wpt6412Qp7lz7ddCjm1xSgkimnOROvwYWVfTQ3v3sNPh4f3nfPxf7t6WW33ReaVCQV1DJMlUKSooZjqxBveFNS2zS1tYxw2tal5RVCqlZW4dK2uK2ZlFhxVdqKkDW4W3LH4L8mE5Po_BRywShKwsqGM8xmFV9UOvgYg7FiDO4gw0lgJGa6ohN_dMVMVyx0s3O7OE0ucXQmiKidGbRpXch60Xr3b8Y3LwaJ8g</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Huang, Cheng</creator><creator>Sun, Tingting</creator><creator>Shu, Hongbo</creator><creator>Chen, Manfang</creator><creator>Liang, Qianqian</creator><creator>Zhou, Ying</creator><creator>Gao, Ping</creator><creator>Xu, Sheng</creator><creator>Yang, Xiukang</creator><creator>Wu, Minli</creator><creator>Jian, Jian</creator><creator>Wang, Xianyou</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200220</creationdate><title>Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries</title><author>Huang, Cheng ; Sun, Tingting ; Shu, Hongbo ; Chen, Manfang ; Liang, Qianqian ; Zhou, Ying ; Gao, Ping ; Xu, Sheng ; Yang, Xiukang ; Wu, Minli ; Jian, Jian ; Wang, Xianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-5f615bb0a50971fb0797925f998ff6375d82f7400b8bfb12fd1d86aa1b7b2f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical immobilization</topic><topic>Conversion</topic><topic>Electron transfer</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Polysulfides</topic><topic>Polysulfides conversion</topic><topic>Reaction kinetics</topic><topic>Shuttle effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Sun, Tingting</creatorcontrib><creatorcontrib>Shu, Hongbo</creatorcontrib><creatorcontrib>Chen, Manfang</creatorcontrib><creatorcontrib>Liang, Qianqian</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Yang, Xiukang</creatorcontrib><creatorcontrib>Wu, Minli</creatorcontrib><creatorcontrib>Jian, Jian</creatorcontrib><creatorcontrib>Wang, Xianyou</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Cheng</au><au>Sun, Tingting</au><au>Shu, Hongbo</au><au>Chen, Manfang</au><au>Liang, Qianqian</au><au>Zhou, Ying</au><au>Gao, Ping</au><au>Xu, Sheng</au><au>Yang, Xiukang</au><au>Wu, Minli</au><au>Jian, Jian</au><au>Wang, Xianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2020-02-20</date><risdate>2020</risdate><volume>334</volume><spage>135658</spage><pages>135658-</pages><artnum>135658</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Lithium-sulfur batteries have gotten a growing number of investigations because of its overwhelming superiority in theoretical energy density and cost. Nevertheless, the application process of lithium-sulfur batteries is severely obstructed by disadvantageous shuttle effect, which arises from the dissolution and migration of intermediate polysulfides and its sluggish conversion kinetics. Herein, we design the conductivity-adsorption-catalysis reaction interface, which is constructed by growing NiCo2S4 nanoparticle on reduced graphene oxide (NiCo2S4@rGO), to afford chemical immobilization and conversion promotion of polysulfides. In this structure, rGO with excellent conductivity can ensure rapid electron transfer and well-distributed NiCo2S4 nanoparticles serve as high-efficiency active sites to anchor polysulfides and accelerate its conversion reaction. Thus, lithium-sulfur batteries with this multifunctional reaction interface deliver improved cycling stability with capacity retention rate of 76% after 500 cycles at 1 C. And a good initial capacity of 776 mAh g−1 is gained under high sulfur loading of 3.6 mg cm−2. This work supplies promising interface design strategies to enhance polysulfides redox kinetics and alleviate shuttle effect for high-performance lithium-sulfur batteries. [Display omitted] •A conductivity-adsorption-catalyze reaction interface is demonstrated.•The lyophilic property and polar surface is more conducive to the electrolyte infiltration and polysulfide adsorption.•NiCo2S4@rGO can effectively boost kinetics of polysulfide conversion reaction.•Using NiCo2S4@rGO in the interlayer exhibits excellent electrochemical performances especially under high sulfur loading.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.135658</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2020-02, Vol.334, p.135658, Article 135658
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2362976163
source Elsevier ScienceDirect Journals
subjects Chemical immobilization
Conversion
Electron transfer
Flux density
Graphene
Interface stability
Interfaces
Lithium
Lithium sulfur batteries
Nanoparticles
Organic chemistry
Polysulfides
Polysulfides conversion
Reaction kinetics
Shuttle effect
title Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20reaction%20interfaces%20for%20capture%20and%20boost%20conversion%20of%20polysulfide%20in%20lithium-sulfur%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Huang,%20Cheng&rft.date=2020-02-20&rft.volume=334&rft.spage=135658&rft.pages=135658-&rft.artnum=135658&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.135658&rft_dat=%3Cproquest_cross%3E2362976163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362976163&rft_id=info:pmid/&rft_els_id=S0013468620300499&rfr_iscdi=true