Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries
Lithium-sulfur batteries have gotten a growing number of investigations because of its overwhelming superiority in theoretical energy density and cost. Nevertheless, the application process of lithium-sulfur batteries is severely obstructed by disadvantageous shuttle effect, which arises from the di...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2020-02, Vol.334, p.135658, Article 135658 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 135658 |
container_title | Electrochimica acta |
container_volume | 334 |
creator | Huang, Cheng Sun, Tingting Shu, Hongbo Chen, Manfang Liang, Qianqian Zhou, Ying Gao, Ping Xu, Sheng Yang, Xiukang Wu, Minli Jian, Jian Wang, Xianyou |
description | Lithium-sulfur batteries have gotten a growing number of investigations because of its overwhelming superiority in theoretical energy density and cost. Nevertheless, the application process of lithium-sulfur batteries is severely obstructed by disadvantageous shuttle effect, which arises from the dissolution and migration of intermediate polysulfides and its sluggish conversion kinetics. Herein, we design the conductivity-adsorption-catalysis reaction interface, which is constructed by growing NiCo2S4 nanoparticle on reduced graphene oxide (NiCo2S4@rGO), to afford chemical immobilization and conversion promotion of polysulfides. In this structure, rGO with excellent conductivity can ensure rapid electron transfer and well-distributed NiCo2S4 nanoparticles serve as high-efficiency active sites to anchor polysulfides and accelerate its conversion reaction. Thus, lithium-sulfur batteries with this multifunctional reaction interface deliver improved cycling stability with capacity retention rate of 76% after 500 cycles at 1 C. And a good initial capacity of 776 mAh g−1 is gained under high sulfur loading of 3.6 mg cm−2. This work supplies promising interface design strategies to enhance polysulfides redox kinetics and alleviate shuttle effect for high-performance lithium-sulfur batteries.
[Display omitted]
•A conductivity-adsorption-catalyze reaction interface is demonstrated.•The lyophilic property and polar surface is more conducive to the electrolyte infiltration and polysulfide adsorption.•NiCo2S4@rGO can effectively boost kinetics of polysulfide conversion reaction.•Using NiCo2S4@rGO in the interlayer exhibits excellent electrochemical performances especially under high sulfur loading. |
doi_str_mv | 10.1016/j.electacta.2020.135658 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2362976163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620300499</els_id><sourcerecordid>2362976163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-5f615bb0a50971fb0797925f998ff6375d82f7400b8bfb12fd1d86aa1b7b2f433</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI4-gwHXHZOmSdrlMPgHI250HZI0wZROU5N0YN7e1Ipb4cK9XM45cD4AbjHaYITZfbcxvdFJ5tmUqMxfQhmtz8AK15wUpKbNOVghhElRsZpdgqsYO4QQZxytgH-d-uTsNOjk_CB7GIz8OaEbkglWahOh9QFqOaYpGCiHFirvY4LaD0cT4qz1Fo6-P8Wpt6412Qp7lz7ddCjm1xSgkimnOROvwYWVfTQ3v3sNPh4f3nfPxf7t6WW33ReaVCQV1DJMlUKSooZjqxBveFNS2zS1tYxw2tal5RVCqlZW4dK2uK2ZlFhxVdqKkDW4W3LH4L8mE5Po_BRywShKwsqGM8xmFV9UOvgYg7FiDO4gw0lgJGa6ohN_dMVMVyx0s3O7OE0ucXQmiKidGbRpXch60Xr3b8Y3LwaJ8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362976163</pqid></control><display><type>article</type><title>Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Cheng ; Sun, Tingting ; Shu, Hongbo ; Chen, Manfang ; Liang, Qianqian ; Zhou, Ying ; Gao, Ping ; Xu, Sheng ; Yang, Xiukang ; Wu, Minli ; Jian, Jian ; Wang, Xianyou</creator><creatorcontrib>Huang, Cheng ; Sun, Tingting ; Shu, Hongbo ; Chen, Manfang ; Liang, Qianqian ; Zhou, Ying ; Gao, Ping ; Xu, Sheng ; Yang, Xiukang ; Wu, Minli ; Jian, Jian ; Wang, Xianyou</creatorcontrib><description>Lithium-sulfur batteries have gotten a growing number of investigations because of its overwhelming superiority in theoretical energy density and cost. Nevertheless, the application process of lithium-sulfur batteries is severely obstructed by disadvantageous shuttle effect, which arises from the dissolution and migration of intermediate polysulfides and its sluggish conversion kinetics. Herein, we design the conductivity-adsorption-catalysis reaction interface, which is constructed by growing NiCo2S4 nanoparticle on reduced graphene oxide (NiCo2S4@rGO), to afford chemical immobilization and conversion promotion of polysulfides. In this structure, rGO with excellent conductivity can ensure rapid electron transfer and well-distributed NiCo2S4 nanoparticles serve as high-efficiency active sites to anchor polysulfides and accelerate its conversion reaction. Thus, lithium-sulfur batteries with this multifunctional reaction interface deliver improved cycling stability with capacity retention rate of 76% after 500 cycles at 1 C. And a good initial capacity of 776 mAh g−1 is gained under high sulfur loading of 3.6 mg cm−2. This work supplies promising interface design strategies to enhance polysulfides redox kinetics and alleviate shuttle effect for high-performance lithium-sulfur batteries.
[Display omitted]
•A conductivity-adsorption-catalyze reaction interface is demonstrated.•The lyophilic property and polar surface is more conducive to the electrolyte infiltration and polysulfide adsorption.•NiCo2S4@rGO can effectively boost kinetics of polysulfide conversion reaction.•Using NiCo2S4@rGO in the interlayer exhibits excellent electrochemical performances especially under high sulfur loading.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.135658</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Chemical immobilization ; Conversion ; Electron transfer ; Flux density ; Graphene ; Interface stability ; Interfaces ; Lithium ; Lithium sulfur batteries ; Nanoparticles ; Organic chemistry ; Polysulfides ; Polysulfides conversion ; Reaction kinetics ; Shuttle effect</subject><ispartof>Electrochimica acta, 2020-02, Vol.334, p.135658, Article 135658</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 20, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-5f615bb0a50971fb0797925f998ff6375d82f7400b8bfb12fd1d86aa1b7b2f433</citedby><cites>FETCH-LOGICAL-c343t-5f615bb0a50971fb0797925f998ff6375d82f7400b8bfb12fd1d86aa1b7b2f433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468620300499$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Sun, Tingting</creatorcontrib><creatorcontrib>Shu, Hongbo</creatorcontrib><creatorcontrib>Chen, Manfang</creatorcontrib><creatorcontrib>Liang, Qianqian</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Yang, Xiukang</creatorcontrib><creatorcontrib>Wu, Minli</creatorcontrib><creatorcontrib>Jian, Jian</creatorcontrib><creatorcontrib>Wang, Xianyou</creatorcontrib><title>Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries</title><title>Electrochimica acta</title><description>Lithium-sulfur batteries have gotten a growing number of investigations because of its overwhelming superiority in theoretical energy density and cost. Nevertheless, the application process of lithium-sulfur batteries is severely obstructed by disadvantageous shuttle effect, which arises from the dissolution and migration of intermediate polysulfides and its sluggish conversion kinetics. Herein, we design the conductivity-adsorption-catalysis reaction interface, which is constructed by growing NiCo2S4 nanoparticle on reduced graphene oxide (NiCo2S4@rGO), to afford chemical immobilization and conversion promotion of polysulfides. In this structure, rGO with excellent conductivity can ensure rapid electron transfer and well-distributed NiCo2S4 nanoparticles serve as high-efficiency active sites to anchor polysulfides and accelerate its conversion reaction. Thus, lithium-sulfur batteries with this multifunctional reaction interface deliver improved cycling stability with capacity retention rate of 76% after 500 cycles at 1 C. And a good initial capacity of 776 mAh g−1 is gained under high sulfur loading of 3.6 mg cm−2. This work supplies promising interface design strategies to enhance polysulfides redox kinetics and alleviate shuttle effect for high-performance lithium-sulfur batteries.
[Display omitted]
•A conductivity-adsorption-catalyze reaction interface is demonstrated.•The lyophilic property and polar surface is more conducive to the electrolyte infiltration and polysulfide adsorption.•NiCo2S4@rGO can effectively boost kinetics of polysulfide conversion reaction.•Using NiCo2S4@rGO in the interlayer exhibits excellent electrochemical performances especially under high sulfur loading.</description><subject>Chemical immobilization</subject><subject>Conversion</subject><subject>Electron transfer</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Interface stability</subject><subject>Interfaces</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Polysulfides</subject><subject>Polysulfides conversion</subject><subject>Reaction kinetics</subject><subject>Shuttle effect</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI4-gwHXHZOmSdrlMPgHI250HZI0wZROU5N0YN7e1Ipb4cK9XM45cD4AbjHaYITZfbcxvdFJ5tmUqMxfQhmtz8AK15wUpKbNOVghhElRsZpdgqsYO4QQZxytgH-d-uTsNOjk_CB7GIz8OaEbkglWahOh9QFqOaYpGCiHFirvY4LaD0cT4qz1Fo6-P8Wpt6412Qp7lz7ddCjm1xSgkimnOROvwYWVfTQ3v3sNPh4f3nfPxf7t6WW33ReaVCQV1DJMlUKSooZjqxBveFNS2zS1tYxw2tal5RVCqlZW4dK2uK2ZlFhxVdqKkDW4W3LH4L8mE5Po_BRywShKwsqGM8xmFV9UOvgYg7FiDO4gw0lgJGa6ohN_dMVMVyx0s3O7OE0ucXQmiKidGbRpXch60Xr3b8Y3LwaJ8g</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Huang, Cheng</creator><creator>Sun, Tingting</creator><creator>Shu, Hongbo</creator><creator>Chen, Manfang</creator><creator>Liang, Qianqian</creator><creator>Zhou, Ying</creator><creator>Gao, Ping</creator><creator>Xu, Sheng</creator><creator>Yang, Xiukang</creator><creator>Wu, Minli</creator><creator>Jian, Jian</creator><creator>Wang, Xianyou</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200220</creationdate><title>Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries</title><author>Huang, Cheng ; Sun, Tingting ; Shu, Hongbo ; Chen, Manfang ; Liang, Qianqian ; Zhou, Ying ; Gao, Ping ; Xu, Sheng ; Yang, Xiukang ; Wu, Minli ; Jian, Jian ; Wang, Xianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-5f615bb0a50971fb0797925f998ff6375d82f7400b8bfb12fd1d86aa1b7b2f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical immobilization</topic><topic>Conversion</topic><topic>Electron transfer</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Interface stability</topic><topic>Interfaces</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Polysulfides</topic><topic>Polysulfides conversion</topic><topic>Reaction kinetics</topic><topic>Shuttle effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Sun, Tingting</creatorcontrib><creatorcontrib>Shu, Hongbo</creatorcontrib><creatorcontrib>Chen, Manfang</creatorcontrib><creatorcontrib>Liang, Qianqian</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Yang, Xiukang</creatorcontrib><creatorcontrib>Wu, Minli</creatorcontrib><creatorcontrib>Jian, Jian</creatorcontrib><creatorcontrib>Wang, Xianyou</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Cheng</au><au>Sun, Tingting</au><au>Shu, Hongbo</au><au>Chen, Manfang</au><au>Liang, Qianqian</au><au>Zhou, Ying</au><au>Gao, Ping</au><au>Xu, Sheng</au><au>Yang, Xiukang</au><au>Wu, Minli</au><au>Jian, Jian</au><au>Wang, Xianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2020-02-20</date><risdate>2020</risdate><volume>334</volume><spage>135658</spage><pages>135658-</pages><artnum>135658</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Lithium-sulfur batteries have gotten a growing number of investigations because of its overwhelming superiority in theoretical energy density and cost. Nevertheless, the application process of lithium-sulfur batteries is severely obstructed by disadvantageous shuttle effect, which arises from the dissolution and migration of intermediate polysulfides and its sluggish conversion kinetics. Herein, we design the conductivity-adsorption-catalysis reaction interface, which is constructed by growing NiCo2S4 nanoparticle on reduced graphene oxide (NiCo2S4@rGO), to afford chemical immobilization and conversion promotion of polysulfides. In this structure, rGO with excellent conductivity can ensure rapid electron transfer and well-distributed NiCo2S4 nanoparticles serve as high-efficiency active sites to anchor polysulfides and accelerate its conversion reaction. Thus, lithium-sulfur batteries with this multifunctional reaction interface deliver improved cycling stability with capacity retention rate of 76% after 500 cycles at 1 C. And a good initial capacity of 776 mAh g−1 is gained under high sulfur loading of 3.6 mg cm−2. This work supplies promising interface design strategies to enhance polysulfides redox kinetics and alleviate shuttle effect for high-performance lithium-sulfur batteries.
[Display omitted]
•A conductivity-adsorption-catalyze reaction interface is demonstrated.•The lyophilic property and polar surface is more conducive to the electrolyte infiltration and polysulfide adsorption.•NiCo2S4@rGO can effectively boost kinetics of polysulfide conversion reaction.•Using NiCo2S4@rGO in the interlayer exhibits excellent electrochemical performances especially under high sulfur loading.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.135658</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2020-02, Vol.334, p.135658, Article 135658 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2362976163 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical immobilization Conversion Electron transfer Flux density Graphene Interface stability Interfaces Lithium Lithium sulfur batteries Nanoparticles Organic chemistry Polysulfides Polysulfides conversion Reaction kinetics Shuttle effect |
title | Multifunctional reaction interfaces for capture and boost conversion of polysulfide in lithium-sulfur batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20reaction%20interfaces%20for%20capture%20and%20boost%20conversion%20of%20polysulfide%20in%20lithium-sulfur%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Huang,%20Cheng&rft.date=2020-02-20&rft.volume=334&rft.spage=135658&rft.pages=135658-&rft.artnum=135658&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.135658&rft_dat=%3Cproquest_cross%3E2362976163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362976163&rft_id=info:pmid/&rft_els_id=S0013468620300499&rfr_iscdi=true |