Dynamic stress state around shallow-buried cavity under transient P wave loads in different conditions

•The theoretical model of cavity under various transient P wave loads is obtained.•Stress distributions around cavity of high and low frequency loads are different.•Waveform and burial depth affect the stress amplitude around cavity.•Convergence of solutions are investigated.•The existence of linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tunnelling and underground space technology 2020-03, Vol.97, p.103228, Article 103228
Hauptverfasser: Li, Zhanwen, Tao, Ming, Du, Kun, Cao, Wenzhuo, Wu, Chengqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103228
container_title Tunnelling and underground space technology
container_volume 97
creator Li, Zhanwen
Tao, Ming
Du, Kun
Cao, Wenzhuo
Wu, Chengqing
description •The theoretical model of cavity under various transient P wave loads is obtained.•Stress distributions around cavity of high and low frequency loads are different.•Waveform and burial depth affect the stress amplitude around cavity.•Convergence of solutions are investigated.•The existence of linear boundary increases the risk of tensile failure around cavity. The failure of underground structure is always caused by local stress redistribution resulted from transient impact loads. An analytical model is established and solved by using the complex variable function method to illustrate the dynamic stress concentration around a shallow-buried cavity under transient P wave loads. The transient wave response is attained as an integration of steady-state wave response in circular frequency domain. By adopting a Butterworth filter, the jump points in the dynamic stress concentration factor (DSCF) curve which is not in line with the overall trend is filtered out to obtain more reasonable results. The convergence and accuracy of the solutions are verified and discussed in detail. DSCF distributions of high wavenumber incidences differ from that of low wavenumber incidences significantly in amplitudes and distribution patterns. The effects of the cavity depth, incidence angle and position of wave peak on DSCF distributions are illustrated.
doi_str_mv 10.1016/j.tust.2019.103228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2362976137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0886779819310326</els_id><sourcerecordid>2362976137</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-ae8099f25004a402831b0c8d57604bcf981ac84163340fa1b5966c338512dbd93</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA6455tGkCbmR8woAudB3SPDCl04xJOsP8ezPUtasD955zHx8ANxgtMcLsrl_mKeUlQViUAiWEn4AF5i2vasrqU7BAnLOqbQU_Bxcp9QihhhCxAO7xMKqN1zDlaFMqorKFKoZpNDB9q2EI-6qborcGarXz-QBLx0aYoxqTt2OGH3CvdhYOQZkE_QiNd87GY0eH0fjsw5iuwJlTQ7LXf3oJvp6fPlev1fr95W31sK4UbXCulOVICEcahGpVI8Ip7pDmpmkZqjvtBMdK8xozSmvkFO4awZimlDeYmM4Ieglu57nbGH4mm7LswxTHslISyohoGaZtcZHZpWNIKVont9FvVDxIjOSRp-zlkac88pQzzxK6n0O23L_zNsqky__aGh-tztIE_1_8F6NSf0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362976137</pqid></control><display><type>article</type><title>Dynamic stress state around shallow-buried cavity under transient P wave loads in different conditions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Zhanwen ; Tao, Ming ; Du, Kun ; Cao, Wenzhuo ; Wu, Chengqing</creator><creatorcontrib>Li, Zhanwen ; Tao, Ming ; Du, Kun ; Cao, Wenzhuo ; Wu, Chengqing</creatorcontrib><description>•The theoretical model of cavity under various transient P wave loads is obtained.•Stress distributions around cavity of high and low frequency loads are different.•Waveform and burial depth affect the stress amplitude around cavity.•Convergence of solutions are investigated.•The existence of linear boundary increases the risk of tensile failure around cavity. The failure of underground structure is always caused by local stress redistribution resulted from transient impact loads. An analytical model is established and solved by using the complex variable function method to illustrate the dynamic stress concentration around a shallow-buried cavity under transient P wave loads. The transient wave response is attained as an integration of steady-state wave response in circular frequency domain. By adopting a Butterworth filter, the jump points in the dynamic stress concentration factor (DSCF) curve which is not in line with the overall trend is filtered out to obtain more reasonable results. The convergence and accuracy of the solutions are verified and discussed in detail. DSCF distributions of high wavenumber incidences differ from that of low wavenumber incidences significantly in amplitudes and distribution patterns. The effects of the cavity depth, incidence angle and position of wave peak on DSCF distributions are illustrated.</description><identifier>ISSN: 0886-7798</identifier><identifier>EISSN: 1878-4364</identifier><identifier>DOI: 10.1016/j.tust.2019.103228</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Butterworth filters ; Complex variable function method ; Complex variables ; Dynamic stress concentration ; Filters ; Impact loads ; Incidence angle ; P waves ; Shallow-buried cavity ; Stress concentration ; Transient loads ; Underground construction ; Underground structures ; Wavelengths</subject><ispartof>Tunnelling and underground space technology, 2020-03, Vol.97, p.103228, Article 103228</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-ae8099f25004a402831b0c8d57604bcf981ac84163340fa1b5966c338512dbd93</citedby><cites>FETCH-LOGICAL-a351t-ae8099f25004a402831b0c8d57604bcf981ac84163340fa1b5966c338512dbd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tust.2019.103228$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Zhanwen</creatorcontrib><creatorcontrib>Tao, Ming</creatorcontrib><creatorcontrib>Du, Kun</creatorcontrib><creatorcontrib>Cao, Wenzhuo</creatorcontrib><creatorcontrib>Wu, Chengqing</creatorcontrib><title>Dynamic stress state around shallow-buried cavity under transient P wave loads in different conditions</title><title>Tunnelling and underground space technology</title><description>•The theoretical model of cavity under various transient P wave loads is obtained.•Stress distributions around cavity of high and low frequency loads are different.•Waveform and burial depth affect the stress amplitude around cavity.•Convergence of solutions are investigated.•The existence of linear boundary increases the risk of tensile failure around cavity. The failure of underground structure is always caused by local stress redistribution resulted from transient impact loads. An analytical model is established and solved by using the complex variable function method to illustrate the dynamic stress concentration around a shallow-buried cavity under transient P wave loads. The transient wave response is attained as an integration of steady-state wave response in circular frequency domain. By adopting a Butterworth filter, the jump points in the dynamic stress concentration factor (DSCF) curve which is not in line with the overall trend is filtered out to obtain more reasonable results. The convergence and accuracy of the solutions are verified and discussed in detail. DSCF distributions of high wavenumber incidences differ from that of low wavenumber incidences significantly in amplitudes and distribution patterns. The effects of the cavity depth, incidence angle and position of wave peak on DSCF distributions are illustrated.</description><subject>Butterworth filters</subject><subject>Complex variable function method</subject><subject>Complex variables</subject><subject>Dynamic stress concentration</subject><subject>Filters</subject><subject>Impact loads</subject><subject>Incidence angle</subject><subject>P waves</subject><subject>Shallow-buried cavity</subject><subject>Stress concentration</subject><subject>Transient loads</subject><subject>Underground construction</subject><subject>Underground structures</subject><subject>Wavelengths</subject><issn>0886-7798</issn><issn>1878-4364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuA6455tGkCbmR8woAudB3SPDCl04xJOsP8ezPUtasD955zHx8ANxgtMcLsrl_mKeUlQViUAiWEn4AF5i2vasrqU7BAnLOqbQU_Bxcp9QihhhCxAO7xMKqN1zDlaFMqorKFKoZpNDB9q2EI-6qborcGarXz-QBLx0aYoxqTt2OGH3CvdhYOQZkE_QiNd87GY0eH0fjsw5iuwJlTQ7LXf3oJvp6fPlev1fr95W31sK4UbXCulOVICEcahGpVI8Ip7pDmpmkZqjvtBMdK8xozSmvkFO4awZimlDeYmM4Ieglu57nbGH4mm7LswxTHslISyohoGaZtcZHZpWNIKVont9FvVDxIjOSRp-zlkac88pQzzxK6n0O23L_zNsqky__aGh-tztIE_1_8F6NSf0M</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Li, Zhanwen</creator><creator>Tao, Ming</creator><creator>Du, Kun</creator><creator>Cao, Wenzhuo</creator><creator>Wu, Chengqing</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202003</creationdate><title>Dynamic stress state around shallow-buried cavity under transient P wave loads in different conditions</title><author>Li, Zhanwen ; Tao, Ming ; Du, Kun ; Cao, Wenzhuo ; Wu, Chengqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-ae8099f25004a402831b0c8d57604bcf981ac84163340fa1b5966c338512dbd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Butterworth filters</topic><topic>Complex variable function method</topic><topic>Complex variables</topic><topic>Dynamic stress concentration</topic><topic>Filters</topic><topic>Impact loads</topic><topic>Incidence angle</topic><topic>P waves</topic><topic>Shallow-buried cavity</topic><topic>Stress concentration</topic><topic>Transient loads</topic><topic>Underground construction</topic><topic>Underground structures</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhanwen</creatorcontrib><creatorcontrib>Tao, Ming</creatorcontrib><creatorcontrib>Du, Kun</creatorcontrib><creatorcontrib>Cao, Wenzhuo</creatorcontrib><creatorcontrib>Wu, Chengqing</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Tunnelling and underground space technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhanwen</au><au>Tao, Ming</au><au>Du, Kun</au><au>Cao, Wenzhuo</au><au>Wu, Chengqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic stress state around shallow-buried cavity under transient P wave loads in different conditions</atitle><jtitle>Tunnelling and underground space technology</jtitle><date>2020-03</date><risdate>2020</risdate><volume>97</volume><spage>103228</spage><pages>103228-</pages><artnum>103228</artnum><issn>0886-7798</issn><eissn>1878-4364</eissn><abstract>•The theoretical model of cavity under various transient P wave loads is obtained.•Stress distributions around cavity of high and low frequency loads are different.•Waveform and burial depth affect the stress amplitude around cavity.•Convergence of solutions are investigated.•The existence of linear boundary increases the risk of tensile failure around cavity. The failure of underground structure is always caused by local stress redistribution resulted from transient impact loads. An analytical model is established and solved by using the complex variable function method to illustrate the dynamic stress concentration around a shallow-buried cavity under transient P wave loads. The transient wave response is attained as an integration of steady-state wave response in circular frequency domain. By adopting a Butterworth filter, the jump points in the dynamic stress concentration factor (DSCF) curve which is not in line with the overall trend is filtered out to obtain more reasonable results. The convergence and accuracy of the solutions are verified and discussed in detail. DSCF distributions of high wavenumber incidences differ from that of low wavenumber incidences significantly in amplitudes and distribution patterns. The effects of the cavity depth, incidence angle and position of wave peak on DSCF distributions are illustrated.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.tust.2019.103228</doi></addata></record>
fulltext fulltext
identifier ISSN: 0886-7798
ispartof Tunnelling and underground space technology, 2020-03, Vol.97, p.103228, Article 103228
issn 0886-7798
1878-4364
language eng
recordid cdi_proquest_journals_2362976137
source Access via ScienceDirect (Elsevier)
subjects Butterworth filters
Complex variable function method
Complex variables
Dynamic stress concentration
Filters
Impact loads
Incidence angle
P waves
Shallow-buried cavity
Stress concentration
Transient loads
Underground construction
Underground structures
Wavelengths
title Dynamic stress state around shallow-buried cavity under transient P wave loads in different conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20stress%20state%20around%20shallow-buried%20cavity%20under%20transient%20P%20wave%20loads%20in%20different%20conditions&rft.jtitle=Tunnelling%20and%20underground%20space%20technology&rft.au=Li,%20Zhanwen&rft.date=2020-03&rft.volume=97&rft.spage=103228&rft.pages=103228-&rft.artnum=103228&rft.issn=0886-7798&rft.eissn=1878-4364&rft_id=info:doi/10.1016/j.tust.2019.103228&rft_dat=%3Cproquest_cross%3E2362976137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362976137&rft_id=info:pmid/&rft_els_id=S0886779819310326&rfr_iscdi=true