Geometric probabilistic evolutionary algorithm

•Probabilistic analysis of geometric transformations leads to new search operators.•The nonlinearity of inversions w.r.t. hyperspheres is imitated stochastically.•Probabilistic search mechanisms inherit geometric transformation properties.•Uniformly distributed reflections add exploration capabiliti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2020-04, Vol.144, p.113080, Article 113080
Hauptverfasser: Segovia-Domínguez, Ignacio, Herrera-Guzmán, Rafael, Serrano-Rubio, Juan Pablo, Hernández-Aguirre, Arturo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113080
container_title Expert systems with applications
container_volume 144
creator Segovia-Domínguez, Ignacio
Herrera-Guzmán, Rafael
Serrano-Rubio, Juan Pablo
Hernández-Aguirre, Arturo
description •Probabilistic analysis of geometric transformations leads to new search operators.•The nonlinearity of inversions w.r.t. hyperspheres is imitated stochastically.•Probabilistic search mechanisms inherit geometric transformation properties.•Uniformly distributed reflections add exploration capabilities to an EA.•Scientific contributions show competitive performance in benchmark problems. In this paper we introduce a crossover operator and a mutation operator, called Bernoulli Reflection Search Operator (BRSO) and Cauchy Distributed Inversion Search Operator (CDISO) respectively, in order to define the search mechanism of a new evolutionary algorithm for global continuous optimisation, namely the Geometric Probabilistic Evolutionary Algorithm (GPEA). Both operators have been motivated by geometric transformations, namely inversions with respect to hyperspheres and reflections with respect to a hyperplanes, but are implemented stochastically. The design of the new operators follows statistical analyses of the search mechanisms (Inversion Search Operator (ISO) and Reflection Search Operator (RSO)) of the Spherical Evolutionary Algorithm (SEA). From the statistical analyses, we concluded that the non-linearity of the ISO can be imitated stochastically, avoiding the calculation of several parameters such as the radius of hypersphere and acceptable regions of application. In addition, a new mutation based on a normal distribution is included in CDISO in order to guide the exploration. On the other hand, the BRSO imitates the mutation of individuals using reflections with respect to hyperplanes and complements the CDISO. In order to evaluate the proposed method, we use the benchmark functions of the special session on real-parameter optimisation of the CEC 2013 competition. We compare GPEA against 12 state-of-the-art methods, and present a statistical analysis using the Wilcoxon signed rank and the Friedman tests. According to the numerical experiments, GPEA exhibits a competitive performance against a variety of sophisticated contemporary algorithms, particularly in higher dimensions.
doi_str_mv 10.1016/j.eswa.2019.113080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2362975160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417419307973</els_id><sourcerecordid>2362975160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-4352b902358cfcf0bb1f5c3b094d5038a5f2d5164e11b20c67ab7401c0b16fd83</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4KngedeZZLPZBS9StBUKXvQckmxWs2ybmqQV396U9expGPi_mZ-PkFuEEgHr-6G08VuVFLAtERk0cEZm2AhW1KJl52QGLRdFhaK6JFcxDgAoAMSMlCvrtzYFZxb74LXSbnQx5c0e_XhIzu9U-Fmo8cMHlz631-SiV2O0N39zTt6fn96W62LzunpZPm4Kw2iTiopxqlugjDemNz1ojT03TENbdRxYo3hPO451ZRE1BVMLpUUFaEBj3XcNm5O76W4u9XWwMcnBH8Iuv5SU1bQVGYacolPKBB9jsL3cB7fNhSWCPHmRgzx5kScvcvKSoYcJsrn_0dkgo3F2Z2zngjVJdt79h_8C-m1q3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362975160</pqid></control><display><type>article</type><title>Geometric probabilistic evolutionary algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Segovia-Domínguez, Ignacio ; Herrera-Guzmán, Rafael ; Serrano-Rubio, Juan Pablo ; Hernández-Aguirre, Arturo</creator><creatorcontrib>Segovia-Domínguez, Ignacio ; Herrera-Guzmán, Rafael ; Serrano-Rubio, Juan Pablo ; Hernández-Aguirre, Arturo</creatorcontrib><description>•Probabilistic analysis of geometric transformations leads to new search operators.•The nonlinearity of inversions w.r.t. hyperspheres is imitated stochastically.•Probabilistic search mechanisms inherit geometric transformation properties.•Uniformly distributed reflections add exploration capabilities to an EA.•Scientific contributions show competitive performance in benchmark problems. In this paper we introduce a crossover operator and a mutation operator, called Bernoulli Reflection Search Operator (BRSO) and Cauchy Distributed Inversion Search Operator (CDISO) respectively, in order to define the search mechanism of a new evolutionary algorithm for global continuous optimisation, namely the Geometric Probabilistic Evolutionary Algorithm (GPEA). Both operators have been motivated by geometric transformations, namely inversions with respect to hyperspheres and reflections with respect to a hyperplanes, but are implemented stochastically. The design of the new operators follows statistical analyses of the search mechanisms (Inversion Search Operator (ISO) and Reflection Search Operator (RSO)) of the Spherical Evolutionary Algorithm (SEA). From the statistical analyses, we concluded that the non-linearity of the ISO can be imitated stochastically, avoiding the calculation of several parameters such as the radius of hypersphere and acceptable regions of application. In addition, a new mutation based on a normal distribution is included in CDISO in order to guide the exploration. On the other hand, the BRSO imitates the mutation of individuals using reflections with respect to hyperplanes and complements the CDISO. In order to evaluate the proposed method, we use the benchmark functions of the special session on real-parameter optimisation of the CEC 2013 competition. We compare GPEA against 12 state-of-the-art methods, and present a statistical analysis using the Wilcoxon signed rank and the Friedman tests. According to the numerical experiments, GPEA exhibits a competitive performance against a variety of sophisticated contemporary algorithms, particularly in higher dimensions.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2019.113080</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Crossovers ; Evolutionary algorithm ; Evolutionary algorithms ; Genetic algorithms ; Geometric transformation ; Hyperplanes ; Hyperspheres ; Inversions ; Linearity ; Multivariate distribution ; Mutation ; Normal distribution ; Operators (mathematics) ; Optimization ; Parameters ; Real parameter optimisation ; Reflection ; Searching ; Spherical inversion ; Statistical analysis ; Statistical methods</subject><ispartof>Expert systems with applications, 2020-04, Vol.144, p.113080, Article 113080</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Apr 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-4352b902358cfcf0bb1f5c3b094d5038a5f2d5164e11b20c67ab7401c0b16fd83</citedby><cites>FETCH-LOGICAL-c328t-4352b902358cfcf0bb1f5c3b094d5038a5f2d5164e11b20c67ab7401c0b16fd83</cites><orcidid>0000-0003-0623-2331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2019.113080$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Segovia-Domínguez, Ignacio</creatorcontrib><creatorcontrib>Herrera-Guzmán, Rafael</creatorcontrib><creatorcontrib>Serrano-Rubio, Juan Pablo</creatorcontrib><creatorcontrib>Hernández-Aguirre, Arturo</creatorcontrib><title>Geometric probabilistic evolutionary algorithm</title><title>Expert systems with applications</title><description>•Probabilistic analysis of geometric transformations leads to new search operators.•The nonlinearity of inversions w.r.t. hyperspheres is imitated stochastically.•Probabilistic search mechanisms inherit geometric transformation properties.•Uniformly distributed reflections add exploration capabilities to an EA.•Scientific contributions show competitive performance in benchmark problems. In this paper we introduce a crossover operator and a mutation operator, called Bernoulli Reflection Search Operator (BRSO) and Cauchy Distributed Inversion Search Operator (CDISO) respectively, in order to define the search mechanism of a new evolutionary algorithm for global continuous optimisation, namely the Geometric Probabilistic Evolutionary Algorithm (GPEA). Both operators have been motivated by geometric transformations, namely inversions with respect to hyperspheres and reflections with respect to a hyperplanes, but are implemented stochastically. The design of the new operators follows statistical analyses of the search mechanisms (Inversion Search Operator (ISO) and Reflection Search Operator (RSO)) of the Spherical Evolutionary Algorithm (SEA). From the statistical analyses, we concluded that the non-linearity of the ISO can be imitated stochastically, avoiding the calculation of several parameters such as the radius of hypersphere and acceptable regions of application. In addition, a new mutation based on a normal distribution is included in CDISO in order to guide the exploration. On the other hand, the BRSO imitates the mutation of individuals using reflections with respect to hyperplanes and complements the CDISO. In order to evaluate the proposed method, we use the benchmark functions of the special session on real-parameter optimisation of the CEC 2013 competition. We compare GPEA against 12 state-of-the-art methods, and present a statistical analysis using the Wilcoxon signed rank and the Friedman tests. According to the numerical experiments, GPEA exhibits a competitive performance against a variety of sophisticated contemporary algorithms, particularly in higher dimensions.</description><subject>Crossovers</subject><subject>Evolutionary algorithm</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Geometric transformation</subject><subject>Hyperplanes</subject><subject>Hyperspheres</subject><subject>Inversions</subject><subject>Linearity</subject><subject>Multivariate distribution</subject><subject>Mutation</subject><subject>Normal distribution</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Real parameter optimisation</subject><subject>Reflection</subject><subject>Searching</subject><subject>Spherical inversion</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4KngedeZZLPZBS9StBUKXvQckmxWs2ybmqQV396U9expGPi_mZ-PkFuEEgHr-6G08VuVFLAtERk0cEZm2AhW1KJl52QGLRdFhaK6JFcxDgAoAMSMlCvrtzYFZxb74LXSbnQx5c0e_XhIzu9U-Fmo8cMHlz631-SiV2O0N39zTt6fn96W62LzunpZPm4Kw2iTiopxqlugjDemNz1ojT03TENbdRxYo3hPO451ZRE1BVMLpUUFaEBj3XcNm5O76W4u9XWwMcnBH8Iuv5SU1bQVGYacolPKBB9jsL3cB7fNhSWCPHmRgzx5kScvcvKSoYcJsrn_0dkgo3F2Z2zngjVJdt79h_8C-m1q3w</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Segovia-Domínguez, Ignacio</creator><creator>Herrera-Guzmán, Rafael</creator><creator>Serrano-Rubio, Juan Pablo</creator><creator>Hernández-Aguirre, Arturo</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0623-2331</orcidid></search><sort><creationdate>20200415</creationdate><title>Geometric probabilistic evolutionary algorithm</title><author>Segovia-Domínguez, Ignacio ; Herrera-Guzmán, Rafael ; Serrano-Rubio, Juan Pablo ; Hernández-Aguirre, Arturo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-4352b902358cfcf0bb1f5c3b094d5038a5f2d5164e11b20c67ab7401c0b16fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crossovers</topic><topic>Evolutionary algorithm</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Geometric transformation</topic><topic>Hyperplanes</topic><topic>Hyperspheres</topic><topic>Inversions</topic><topic>Linearity</topic><topic>Multivariate distribution</topic><topic>Mutation</topic><topic>Normal distribution</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Real parameter optimisation</topic><topic>Reflection</topic><topic>Searching</topic><topic>Spherical inversion</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segovia-Domínguez, Ignacio</creatorcontrib><creatorcontrib>Herrera-Guzmán, Rafael</creatorcontrib><creatorcontrib>Serrano-Rubio, Juan Pablo</creatorcontrib><creatorcontrib>Hernández-Aguirre, Arturo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segovia-Domínguez, Ignacio</au><au>Herrera-Guzmán, Rafael</au><au>Serrano-Rubio, Juan Pablo</au><au>Hernández-Aguirre, Arturo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric probabilistic evolutionary algorithm</atitle><jtitle>Expert systems with applications</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>144</volume><spage>113080</spage><pages>113080-</pages><artnum>113080</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•Probabilistic analysis of geometric transformations leads to new search operators.•The nonlinearity of inversions w.r.t. hyperspheres is imitated stochastically.•Probabilistic search mechanisms inherit geometric transformation properties.•Uniformly distributed reflections add exploration capabilities to an EA.•Scientific contributions show competitive performance in benchmark problems. In this paper we introduce a crossover operator and a mutation operator, called Bernoulli Reflection Search Operator (BRSO) and Cauchy Distributed Inversion Search Operator (CDISO) respectively, in order to define the search mechanism of a new evolutionary algorithm for global continuous optimisation, namely the Geometric Probabilistic Evolutionary Algorithm (GPEA). Both operators have been motivated by geometric transformations, namely inversions with respect to hyperspheres and reflections with respect to a hyperplanes, but are implemented stochastically. The design of the new operators follows statistical analyses of the search mechanisms (Inversion Search Operator (ISO) and Reflection Search Operator (RSO)) of the Spherical Evolutionary Algorithm (SEA). From the statistical analyses, we concluded that the non-linearity of the ISO can be imitated stochastically, avoiding the calculation of several parameters such as the radius of hypersphere and acceptable regions of application. In addition, a new mutation based on a normal distribution is included in CDISO in order to guide the exploration. On the other hand, the BRSO imitates the mutation of individuals using reflections with respect to hyperplanes and complements the CDISO. In order to evaluate the proposed method, we use the benchmark functions of the special session on real-parameter optimisation of the CEC 2013 competition. We compare GPEA against 12 state-of-the-art methods, and present a statistical analysis using the Wilcoxon signed rank and the Friedman tests. According to the numerical experiments, GPEA exhibits a competitive performance against a variety of sophisticated contemporary algorithms, particularly in higher dimensions.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2019.113080</doi><orcidid>https://orcid.org/0000-0003-0623-2331</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2020-04, Vol.144, p.113080, Article 113080
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2362975160
source Elsevier ScienceDirect Journals
subjects Crossovers
Evolutionary algorithm
Evolutionary algorithms
Genetic algorithms
Geometric transformation
Hyperplanes
Hyperspheres
Inversions
Linearity
Multivariate distribution
Mutation
Normal distribution
Operators (mathematics)
Optimization
Parameters
Real parameter optimisation
Reflection
Searching
Spherical inversion
Statistical analysis
Statistical methods
title Geometric probabilistic evolutionary algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20probabilistic%20evolutionary%20algorithm&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Segovia-Dom%C3%ADnguez,%20Ignacio&rft.date=2020-04-15&rft.volume=144&rft.spage=113080&rft.pages=113080-&rft.artnum=113080&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2019.113080&rft_dat=%3Cproquest_cross%3E2362975160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362975160&rft_id=info:pmid/&rft_els_id=S0957417419307973&rfr_iscdi=true