Large Power Amplification in Magneto‐Mechano‐Electric Harvesters through Distributed Forcing

Energy harvesting from extremely low frequency magnetic fields using magneto‐mechano‐electric (MME) harvesters enables wireless power transfer for operating Internet of Things (IoT) devices. The MME harvesters are designed to resonate at a fixed frequency by absorbing AC magnetic fields through a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2020-02, Vol.10 (8), p.n/a
Hauptverfasser: Sriramdas, Rammohan, Kang, Min‐Gyu, Meng, Miao, Kiani, Mehdi, Ryu, Jungho, Sanghadasa, Mohan, Priya, Shashank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced energy materials
container_volume 10
creator Sriramdas, Rammohan
Kang, Min‐Gyu
Meng, Miao
Kiani, Mehdi
Ryu, Jungho
Sanghadasa, Mohan
Priya, Shashank
description Energy harvesting from extremely low frequency magnetic fields using magneto‐mechano‐electric (MME) harvesters enables wireless power transfer for operating Internet of Things (IoT) devices. The MME harvesters are designed to resonate at a fixed frequency by absorbing AC magnetic fields through a composite cantilever comprising of piezoelectric and magnetostrictive materials, and a permanent magnetic tip mass. However, this harvester architecture limits power generation because volume of the magnetic end mass is closely coupled with the resonance frequency of the device structure. Here, a method is demonstrated for maintaining the resonance frequency of the MME harvesters under all operating conditions (e.g., 60 Hz, standard frequency of electricity in many countries) while simultaneously enhancing the output power generation. By distributing the magnetic mass over the beam, the output power of the harvester is significantly enhanced at a constant resonance frequency. The MME harvester with distributed forcing shows 280% improvement in the power generation compared with a traditional architecture. The generated power is shown to be sufficient to power eight different onboard sensors with wireless data transmission integrated on a drone. These results demonstrate the promise of MME energy harvesters for powering wireless communication and IoT sensors. Amplified magnetic field energy harvesting at a desired frequency is demonstrated by using distributed forcing in magnetoelectric coupled magneto‐mechano‐electric energy harvesters. A 280% enhancement in the power generation is observed using a distributed forcing harvester compared with a conventional architecture at 60 Hz. The power generated by the harvester is used in demonstrating wireless data communication from eight different sensors.
doi_str_mv 10.1002/aenm.201903689
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2362660222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2362660222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-c9d6c57815333aafa3a7873afd274fbfeb571fed89e1872b548fdb39311c4fc43</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiQS5em7iebEf-9UjQRATUA96rt3udClZttguEm7-BH-jv8QlGDw6l3mTeZ-ZyYvQNSVDSgi7VdCsh4xQQXiaizPUoymNozSPyflJc3aJBiGsSFexoITzHnqbK18BfnY78Hi03tTWWK1a6xpsG7xQVQOt-_78WoBequagJjXo1luNZ8p_QGjBB9wuvdtWS3xnQzcqti2UeOq8tk11hS6MqgMMfnsfvU4nL-NZNH-6fxiP5pHmNBORFmWqkyynCedcKaO4yvKMK1OyLDaFgSLJqIEyF0DzjBVJnJuy4IJTqmOjY95HN8e9G-_et91fcuW2vulOSsZTlqaEMda5hkeX9i4ED0ZuvF0rv5eUyEOQ8hCkPAXZAeII7GwN-3_ccjR5XPyxPyR7em0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362660222</pqid></control><display><type>article</type><title>Large Power Amplification in Magneto‐Mechano‐Electric Harvesters through Distributed Forcing</title><source>Access via Wiley Online Library</source><creator>Sriramdas, Rammohan ; Kang, Min‐Gyu ; Meng, Miao ; Kiani, Mehdi ; Ryu, Jungho ; Sanghadasa, Mohan ; Priya, Shashank</creator><creatorcontrib>Sriramdas, Rammohan ; Kang, Min‐Gyu ; Meng, Miao ; Kiani, Mehdi ; Ryu, Jungho ; Sanghadasa, Mohan ; Priya, Shashank</creatorcontrib><description>Energy harvesting from extremely low frequency magnetic fields using magneto‐mechano‐electric (MME) harvesters enables wireless power transfer for operating Internet of Things (IoT) devices. The MME harvesters are designed to resonate at a fixed frequency by absorbing AC magnetic fields through a composite cantilever comprising of piezoelectric and magnetostrictive materials, and a permanent magnetic tip mass. However, this harvester architecture limits power generation because volume of the magnetic end mass is closely coupled with the resonance frequency of the device structure. Here, a method is demonstrated for maintaining the resonance frequency of the MME harvesters under all operating conditions (e.g., 60 Hz, standard frequency of electricity in many countries) while simultaneously enhancing the output power generation. By distributing the magnetic mass over the beam, the output power of the harvester is significantly enhanced at a constant resonance frequency. The MME harvester with distributed forcing shows 280% improvement in the power generation compared with a traditional architecture. The generated power is shown to be sufficient to power eight different onboard sensors with wireless data transmission integrated on a drone. These results demonstrate the promise of MME energy harvesters for powering wireless communication and IoT sensors. Amplified magnetic field energy harvesting at a desired frequency is demonstrated by using distributed forcing in magnetoelectric coupled magneto‐mechano‐electric energy harvesters. A 280% enhancement in the power generation is observed using a distributed forcing harvester compared with a conventional architecture at 60 Hz. The power generated by the harvester is used in demonstrating wireless data communication from eight different sensors.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201903689</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Computer architecture ; Data transmission ; Energy harvesting ; Extremely low frequencies ; Internet of Things ; Magnetic fields ; magnetoelectric (ME) ; Magnetostriction ; magneto‐mechano‐electric (MME) ; piezoelectric ; Piezoelectricity ; Resonance ; Sensors ; Wireless communications ; Wireless power transmission</subject><ispartof>Advanced energy materials, 2020-02, Vol.10 (8), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-c9d6c57815333aafa3a7873afd274fbfeb571fed89e1872b548fdb39311c4fc43</citedby><cites>FETCH-LOGICAL-c3179-c9d6c57815333aafa3a7873afd274fbfeb571fed89e1872b548fdb39311c4fc43</cites><orcidid>0000-0002-0687-3748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201903689$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201903689$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Kang, Min‐Gyu</creatorcontrib><creatorcontrib>Meng, Miao</creatorcontrib><creatorcontrib>Kiani, Mehdi</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Sanghadasa, Mohan</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><title>Large Power Amplification in Magneto‐Mechano‐Electric Harvesters through Distributed Forcing</title><title>Advanced energy materials</title><description>Energy harvesting from extremely low frequency magnetic fields using magneto‐mechano‐electric (MME) harvesters enables wireless power transfer for operating Internet of Things (IoT) devices. The MME harvesters are designed to resonate at a fixed frequency by absorbing AC magnetic fields through a composite cantilever comprising of piezoelectric and magnetostrictive materials, and a permanent magnetic tip mass. However, this harvester architecture limits power generation because volume of the magnetic end mass is closely coupled with the resonance frequency of the device structure. Here, a method is demonstrated for maintaining the resonance frequency of the MME harvesters under all operating conditions (e.g., 60 Hz, standard frequency of electricity in many countries) while simultaneously enhancing the output power generation. By distributing the magnetic mass over the beam, the output power of the harvester is significantly enhanced at a constant resonance frequency. The MME harvester with distributed forcing shows 280% improvement in the power generation compared with a traditional architecture. The generated power is shown to be sufficient to power eight different onboard sensors with wireless data transmission integrated on a drone. These results demonstrate the promise of MME energy harvesters for powering wireless communication and IoT sensors. Amplified magnetic field energy harvesting at a desired frequency is demonstrated by using distributed forcing in magnetoelectric coupled magneto‐mechano‐electric energy harvesters. A 280% enhancement in the power generation is observed using a distributed forcing harvester compared with a conventional architecture at 60 Hz. The power generated by the harvester is used in demonstrating wireless data communication from eight different sensors.</description><subject>Computer architecture</subject><subject>Data transmission</subject><subject>Energy harvesting</subject><subject>Extremely low frequencies</subject><subject>Internet of Things</subject><subject>Magnetic fields</subject><subject>magnetoelectric (ME)</subject><subject>Magnetostriction</subject><subject>magneto‐mechano‐electric (MME)</subject><subject>piezoelectric</subject><subject>Piezoelectricity</subject><subject>Resonance</subject><subject>Sensors</subject><subject>Wireless communications</subject><subject>Wireless power transmission</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiQS5em7iebEf-9UjQRATUA96rt3udClZttguEm7-BH-jv8QlGDw6l3mTeZ-ZyYvQNSVDSgi7VdCsh4xQQXiaizPUoymNozSPyflJc3aJBiGsSFexoITzHnqbK18BfnY78Hi03tTWWK1a6xpsG7xQVQOt-_78WoBequagJjXo1luNZ8p_QGjBB9wuvdtWS3xnQzcqti2UeOq8tk11hS6MqgMMfnsfvU4nL-NZNH-6fxiP5pHmNBORFmWqkyynCedcKaO4yvKMK1OyLDaFgSLJqIEyF0DzjBVJnJuy4IJTqmOjY95HN8e9G-_et91fcuW2vulOSsZTlqaEMda5hkeX9i4ED0ZuvF0rv5eUyEOQ8hCkPAXZAeII7GwN-3_ccjR5XPyxPyR7em0</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Sriramdas, Rammohan</creator><creator>Kang, Min‐Gyu</creator><creator>Meng, Miao</creator><creator>Kiani, Mehdi</creator><creator>Ryu, Jungho</creator><creator>Sanghadasa, Mohan</creator><creator>Priya, Shashank</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0687-3748</orcidid></search><sort><creationdate>20200201</creationdate><title>Large Power Amplification in Magneto‐Mechano‐Electric Harvesters through Distributed Forcing</title><author>Sriramdas, Rammohan ; Kang, Min‐Gyu ; Meng, Miao ; Kiani, Mehdi ; Ryu, Jungho ; Sanghadasa, Mohan ; Priya, Shashank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-c9d6c57815333aafa3a7873afd274fbfeb571fed89e1872b548fdb39311c4fc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer architecture</topic><topic>Data transmission</topic><topic>Energy harvesting</topic><topic>Extremely low frequencies</topic><topic>Internet of Things</topic><topic>Magnetic fields</topic><topic>magnetoelectric (ME)</topic><topic>Magnetostriction</topic><topic>magneto‐mechano‐electric (MME)</topic><topic>piezoelectric</topic><topic>Piezoelectricity</topic><topic>Resonance</topic><topic>Sensors</topic><topic>Wireless communications</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Kang, Min‐Gyu</creatorcontrib><creatorcontrib>Meng, Miao</creatorcontrib><creatorcontrib>Kiani, Mehdi</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Sanghadasa, Mohan</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sriramdas, Rammohan</au><au>Kang, Min‐Gyu</au><au>Meng, Miao</au><au>Kiani, Mehdi</au><au>Ryu, Jungho</au><au>Sanghadasa, Mohan</au><au>Priya, Shashank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Power Amplification in Magneto‐Mechano‐Electric Harvesters through Distributed Forcing</atitle><jtitle>Advanced energy materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>10</volume><issue>8</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Energy harvesting from extremely low frequency magnetic fields using magneto‐mechano‐electric (MME) harvesters enables wireless power transfer for operating Internet of Things (IoT) devices. The MME harvesters are designed to resonate at a fixed frequency by absorbing AC magnetic fields through a composite cantilever comprising of piezoelectric and magnetostrictive materials, and a permanent magnetic tip mass. However, this harvester architecture limits power generation because volume of the magnetic end mass is closely coupled with the resonance frequency of the device structure. Here, a method is demonstrated for maintaining the resonance frequency of the MME harvesters under all operating conditions (e.g., 60 Hz, standard frequency of electricity in many countries) while simultaneously enhancing the output power generation. By distributing the magnetic mass over the beam, the output power of the harvester is significantly enhanced at a constant resonance frequency. The MME harvester with distributed forcing shows 280% improvement in the power generation compared with a traditional architecture. The generated power is shown to be sufficient to power eight different onboard sensors with wireless data transmission integrated on a drone. These results demonstrate the promise of MME energy harvesters for powering wireless communication and IoT sensors. Amplified magnetic field energy harvesting at a desired frequency is demonstrated by using distributed forcing in magnetoelectric coupled magneto‐mechano‐electric energy harvesters. A 280% enhancement in the power generation is observed using a distributed forcing harvester compared with a conventional architecture at 60 Hz. The power generated by the harvester is used in demonstrating wireless data communication from eight different sensors.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201903689</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0687-3748</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2020-02, Vol.10 (8), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2362660222
source Access via Wiley Online Library
subjects Computer architecture
Data transmission
Energy harvesting
Extremely low frequencies
Internet of Things
Magnetic fields
magnetoelectric (ME)
Magnetostriction
magneto‐mechano‐electric (MME)
piezoelectric
Piezoelectricity
Resonance
Sensors
Wireless communications
Wireless power transmission
title Large Power Amplification in Magneto‐Mechano‐Electric Harvesters through Distributed Forcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Power%20Amplification%20in%20Magneto%E2%80%90Mechano%E2%80%90Electric%20Harvesters%20through%20Distributed%20Forcing&rft.jtitle=Advanced%20energy%20materials&rft.au=Sriramdas,%20Rammohan&rft.date=2020-02-01&rft.volume=10&rft.issue=8&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201903689&rft_dat=%3Cproquest_cross%3E2362660222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362660222&rft_id=info:pmid/&rfr_iscdi=true