Generalized Tonnetz and discrete Abel-Jacobi map
Motivated by classical Euler's \(Tonnetz\), we introduce and study the combinatorics and topology of more general simplicial complexes \(Tonn^{n,k}(L)\) of "Tonnetz type". Out main result is that for a sufficiently generic choice of parameters the generalized tonnetz \(Tonn^{n,k}(L)\)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jevtić, Filip D Živaljević, Rade T |
description | Motivated by classical Euler's \(Tonnetz\), we introduce and study the combinatorics and topology of more general simplicial complexes \(Tonn^{n,k}(L)\) of "Tonnetz type". Out main result is that for a sufficiently generic choice of parameters the generalized tonnetz \(Tonn^{n,k}(L)\) is a triangulation of a \((k-1)\)-dimensional torus \(T^{k-1}\). In the proof we construct and use the properties of a "discrete Abel-Jacobi map", which takes values in the torus \(T^{k-1} \cong \mathbb{R}^{k-1}/\Lambda\) where \(\Lambda \cong \mathbb{A}^\ast_{k-1}\) is the permutohedral lattice. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2362583507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2362583507</sourcerecordid><originalsourceid>FETCH-proquest_journals_23625835073</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcE_NSy1KzMmsSk1RCMnPy0stqVJIzEtRSMksTi5KLUlVcExKzdH1SkzOT8pUyE0s4GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNjMyNTC2NTA3Nj4lQBAERJMrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362583507</pqid></control><display><type>article</type><title>Generalized Tonnetz and discrete Abel-Jacobi map</title><source>Free E- Journals</source><creator>Jevtić, Filip D ; Živaljević, Rade T</creator><creatorcontrib>Jevtić, Filip D ; Živaljević, Rade T</creatorcontrib><description>Motivated by classical Euler's \(Tonnetz\), we introduce and study the combinatorics and topology of more general simplicial complexes \(Tonn^{n,k}(L)\) of "Tonnetz type". Out main result is that for a sufficiently generic choice of parameters the generalized tonnetz \(Tonn^{n,k}(L)\) is a triangulation of a \((k-1)\)-dimensional torus \(T^{k-1}\). In the proof we construct and use the properties of a "discrete Abel-Jacobi map", which takes values in the torus \(T^{k-1} \cong \mathbb{R}^{k-1}/\Lambda\) where \(\Lambda \cong \mathbb{A}^\ast_{k-1}\) is the permutohedral lattice.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Topology ; Toruses ; Triangulation</subject><ispartof>arXiv.org, 2020-05</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jevtić, Filip D</creatorcontrib><creatorcontrib>Živaljević, Rade T</creatorcontrib><title>Generalized Tonnetz and discrete Abel-Jacobi map</title><title>arXiv.org</title><description>Motivated by classical Euler's \(Tonnetz\), we introduce and study the combinatorics and topology of more general simplicial complexes \(Tonn^{n,k}(L)\) of "Tonnetz type". Out main result is that for a sufficiently generic choice of parameters the generalized tonnetz \(Tonn^{n,k}(L)\) is a triangulation of a \((k-1)\)-dimensional torus \(T^{k-1}\). In the proof we construct and use the properties of a "discrete Abel-Jacobi map", which takes values in the torus \(T^{k-1} \cong \mathbb{R}^{k-1}/\Lambda\) where \(\Lambda \cong \mathbb{A}^\ast_{k-1}\) is the permutohedral lattice.</description><subject>Combinatorial analysis</subject><subject>Topology</subject><subject>Toruses</subject><subject>Triangulation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcE_NSy1KzMmsSk1RCMnPy0stqVJIzEtRSMksTi5KLUlVcExKzdH1SkzOT8pUyE0s4GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNjMyNTC2NTA3Nj4lQBAERJMrA</recordid><startdate>20200503</startdate><enddate>20200503</enddate><creator>Jevtić, Filip D</creator><creator>Živaljević, Rade T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200503</creationdate><title>Generalized Tonnetz and discrete Abel-Jacobi map</title><author>Jevtić, Filip D ; Živaljević, Rade T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23625835073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Combinatorial analysis</topic><topic>Topology</topic><topic>Toruses</topic><topic>Triangulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Jevtić, Filip D</creatorcontrib><creatorcontrib>Živaljević, Rade T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jevtić, Filip D</au><au>Živaljević, Rade T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalized Tonnetz and discrete Abel-Jacobi map</atitle><jtitle>arXiv.org</jtitle><date>2020-05-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Motivated by classical Euler's \(Tonnetz\), we introduce and study the combinatorics and topology of more general simplicial complexes \(Tonn^{n,k}(L)\) of "Tonnetz type". Out main result is that for a sufficiently generic choice of parameters the generalized tonnetz \(Tonn^{n,k}(L)\) is a triangulation of a \((k-1)\)-dimensional torus \(T^{k-1}\). In the proof we construct and use the properties of a "discrete Abel-Jacobi map", which takes values in the torus \(T^{k-1} \cong \mathbb{R}^{k-1}/\Lambda\) where \(\Lambda \cong \mathbb{A}^\ast_{k-1}\) is the permutohedral lattice.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2362583507 |
source | Free E- Journals |
subjects | Combinatorial analysis Topology Toruses Triangulation |
title | Generalized Tonnetz and discrete Abel-Jacobi map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalized%20Tonnetz%20and%20discrete%20Abel-Jacobi%20map&rft.jtitle=arXiv.org&rft.au=Jevti%C4%87,%20Filip%20D&rft.date=2020-05-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2362583507%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362583507&rft_id=info:pmid/&rfr_iscdi=true |