Método penalizado de multidominios espectrales para la simulación numérica de avalanchas granulares/A spectral multidomain penalty method solver for the numerical simulation of granular avalanches

Este trabajo presenta una simulación numérica basada en elementos de alto orden de una avalancha granular experimental, con el fin de evaluar el potencial de estas técnicas espectrales para tratar las leyes de conservación en geofísica. La discretización espacial de estas ecuaciones se desarrolló a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth sciences research journal 2019-01, Vol.23 (4), p.317
Hauptverfasser: Mario Germán Trujillo-Vela, Escobar-Vargas, Jorge Alberto, Ramos-Cañón, Alfonso Mariano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 317
container_title Earth sciences research journal
container_volume 23
creator Mario Germán Trujillo-Vela
Escobar-Vargas, Jorge Alberto
Ramos-Cañón, Alfonso Mariano
description Este trabajo presenta una simulación numérica basada en elementos de alto orden de una avalancha granular experimental, con el fin de evaluar el potencial de estas técnicas espectrales para tratar las leyes de conservación en geofísica. La discretización espacial de estas ecuaciones se desarrolló a través del método penalizado de multidominios espectrales (SMPM). Los términos temporales se discretizaron utilizando un método de Runge-Kutta de preservación de estabilidad fuerte. La estabilidad del esquema numérico se asegura con el uso de un filtro espectral y un coeficiente de presión lateral de tierras constante o regularizado. El caso de prueba es una avalancha granular que se genera en un canal rectangular de pequeña escala con gradiente topográfico. Se realizó un test de independencia de malla para aclarar el orden del error en la conservación de masas producida por los tratamientos aquí implementados. Las predicciones numéricas de las avalanchas granulares se comparan con las mediciones experimentales realizadas por Denlinger & Iverson (2001). Además, se analizaron las condiciones de frontera y parámetros como el coeficiente de presión lateral de tierras y el factor de corrección de momento para observar la incidencia de estos parámetros al resolver las ecuaciones de flujo granular. Este trabajo identifica los beneficios y las debilidades del SMPM para resolver este conjunto de ecuaciones, con lo cual es posible concluir que el SMPM proporciona una solución adecuada de las ecuaciones de flujo granular propuestas por Iverson & Denlinger (2001). También, produce predicciones comparables con datos experimentales y resultados numéricos generados por otros esquemas. This work presents a high-order element-based numerical simulation of an experimental granular avalanche, in order to assess the potential of these spectral techniques to handle conservation laws in geophysics. The spatial discretization of these equations was developed via the spectral multidomain penalty method (SMPM). The temporal terms were discretized using a strong-stability preserving Runge-Kutta method. Stability of the numerical scheme is ensured with the use of a spectral filter and a constant or regularized lateral earth pressure coefficient. The test case is a granular avalanche that is generated in a small-scale rectangular flume with topographical gradient. A grid independence test was performed to clarify the order of the error in the mass conservation produced by the treatments h
doi_str_mv 10.15446/esrj.v23n4.77683
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2360064018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2360064018</sourcerecordid><originalsourceid>FETCH-proquest_journals_23600640183</originalsourceid><addsrcrecordid>eNqNjT1Ow0AQRlcIJMzPAehGonay9vonLhEC0aSjj0b2mGy03jU760hwo9QcwQXXwhHBNdVM8b73hLhL5CLJs6xYEvvdYp8qmy3KslipMxGlSlWxyvLqXERJWWVxkVTyUlwx76TMyzTNI_G9Hg_BNQ56smj0J05vQ9ANJujGddpqx0DcUx08GmLo0SMYBNYTg7UevyzYoRsPXtd4nOIeDdp6iwxvHu0EeeLlA_w5Zjdq-1sNH9BR2LoG2Jk9eWidh7Clo5eOWnOqBe0suHb2zi3iG3HRomG6Pd1rcf_89Pr4EvfevQ_EYbNzg59ivElVIWWRyWSl_kf9ADQrdyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360064018</pqid></control><display><type>article</type><title>Método penalizado de multidominios espectrales para la simulación numérica de avalanchas granulares/A spectral multidomain penalty method solver for the numerical simulation of granular avalanches</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mario Germán Trujillo-Vela ; Escobar-Vargas, Jorge Alberto ; Ramos-Cañón, Alfonso Mariano</creator><creatorcontrib>Mario Germán Trujillo-Vela ; Escobar-Vargas, Jorge Alberto ; Ramos-Cañón, Alfonso Mariano</creatorcontrib><description>Este trabajo presenta una simulación numérica basada en elementos de alto orden de una avalancha granular experimental, con el fin de evaluar el potencial de estas técnicas espectrales para tratar las leyes de conservación en geofísica. La discretización espacial de estas ecuaciones se desarrolló a través del método penalizado de multidominios espectrales (SMPM). Los términos temporales se discretizaron utilizando un método de Runge-Kutta de preservación de estabilidad fuerte. La estabilidad del esquema numérico se asegura con el uso de un filtro espectral y un coeficiente de presión lateral de tierras constante o regularizado. El caso de prueba es una avalancha granular que se genera en un canal rectangular de pequeña escala con gradiente topográfico. Se realizó un test de independencia de malla para aclarar el orden del error en la conservación de masas producida por los tratamientos aquí implementados. Las predicciones numéricas de las avalanchas granulares se comparan con las mediciones experimentales realizadas por Denlinger &amp; Iverson (2001). Además, se analizaron las condiciones de frontera y parámetros como el coeficiente de presión lateral de tierras y el factor de corrección de momento para observar la incidencia de estos parámetros al resolver las ecuaciones de flujo granular. Este trabajo identifica los beneficios y las debilidades del SMPM para resolver este conjunto de ecuaciones, con lo cual es posible concluir que el SMPM proporciona una solución adecuada de las ecuaciones de flujo granular propuestas por Iverson &amp; Denlinger (2001). También, produce predicciones comparables con datos experimentales y resultados numéricos generados por otros esquemas. This work presents a high-order element-based numerical simulation of an experimental granular avalanche, in order to assess the potential of these spectral techniques to handle conservation laws in geophysics. The spatial discretization of these equations was developed via the spectral multidomain penalty method (SMPM). The temporal terms were discretized using a strong-stability preserving Runge-Kutta method. Stability of the numerical scheme is ensured with the use of a spectral filter and a constant or regularized lateral earth pressure coefficient. The test case is a granular avalanche that is generated in a small-scale rectangular flume with topographical gradient. A grid independence test was performed to clarify the order of the error in the mass conservation produced by the treatments here implemented. The numerical predictions of the granular avalanches are compared with experimental measurements performed by Denlinger &amp; Iverson (2001). Furthermore, the boundary conditions and parameters such as lateral earth pressure coefficients and the momentum correction factor were analyzed to observe the incidence of these features when solving the granular flow equations. This work identifies the benefits and weaknesses of the SMPM to solve this set of equations and, it is possible to conclude that the SMPM provides an appropriate solution of the granular flow equations proposed by Iverson &amp; Denlinger (2001). Besides, it produces comparable predictions to experimental data and numerical results given by other schemes.</description><identifier>ISSN: 1794-6190</identifier><identifier>EISSN: 2339-3459</identifier><identifier>DOI: 10.15446/esrj.v23n4.77683</identifier><language>eng</language><publisher>Bogata: Universidad Nacional de Colombia</publisher><subject>Avalanches ; Boundary conditions ; Coefficients ; Computer simulation ; Conservation ; Conservation laws ; Discretization ; Earth ; Earth pressure ; Flow equations ; Flumes ; Geophysics ; Landslides ; Lateral pressure ; Mathematical models ; Momentum ; Pressure ; Resolvers ; Runge-Kutta method ; Simulation ; Spectra ; Stability</subject><ispartof>Earth sciences research journal, 2019-01, Vol.23 (4), p.317</ispartof><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Mario Germán Trujillo-Vela</creatorcontrib><creatorcontrib>Escobar-Vargas, Jorge Alberto</creatorcontrib><creatorcontrib>Ramos-Cañón, Alfonso Mariano</creatorcontrib><title>Método penalizado de multidominios espectrales para la simulación numérica de avalanchas granulares/A spectral multidomain penalty method solver for the numerical simulation of granular avalanches</title><title>Earth sciences research journal</title><description>Este trabajo presenta una simulación numérica basada en elementos de alto orden de una avalancha granular experimental, con el fin de evaluar el potencial de estas técnicas espectrales para tratar las leyes de conservación en geofísica. La discretización espacial de estas ecuaciones se desarrolló a través del método penalizado de multidominios espectrales (SMPM). Los términos temporales se discretizaron utilizando un método de Runge-Kutta de preservación de estabilidad fuerte. La estabilidad del esquema numérico se asegura con el uso de un filtro espectral y un coeficiente de presión lateral de tierras constante o regularizado. El caso de prueba es una avalancha granular que se genera en un canal rectangular de pequeña escala con gradiente topográfico. Se realizó un test de independencia de malla para aclarar el orden del error en la conservación de masas producida por los tratamientos aquí implementados. Las predicciones numéricas de las avalanchas granulares se comparan con las mediciones experimentales realizadas por Denlinger &amp; Iverson (2001). Además, se analizaron las condiciones de frontera y parámetros como el coeficiente de presión lateral de tierras y el factor de corrección de momento para observar la incidencia de estos parámetros al resolver las ecuaciones de flujo granular. Este trabajo identifica los beneficios y las debilidades del SMPM para resolver este conjunto de ecuaciones, con lo cual es posible concluir que el SMPM proporciona una solución adecuada de las ecuaciones de flujo granular propuestas por Iverson &amp; Denlinger (2001). También, produce predicciones comparables con datos experimentales y resultados numéricos generados por otros esquemas. This work presents a high-order element-based numerical simulation of an experimental granular avalanche, in order to assess the potential of these spectral techniques to handle conservation laws in geophysics. The spatial discretization of these equations was developed via the spectral multidomain penalty method (SMPM). The temporal terms were discretized using a strong-stability preserving Runge-Kutta method. Stability of the numerical scheme is ensured with the use of a spectral filter and a constant or regularized lateral earth pressure coefficient. The test case is a granular avalanche that is generated in a small-scale rectangular flume with topographical gradient. A grid independence test was performed to clarify the order of the error in the mass conservation produced by the treatments here implemented. The numerical predictions of the granular avalanches are compared with experimental measurements performed by Denlinger &amp; Iverson (2001). Furthermore, the boundary conditions and parameters such as lateral earth pressure coefficients and the momentum correction factor were analyzed to observe the incidence of these features when solving the granular flow equations. This work identifies the benefits and weaknesses of the SMPM to solve this set of equations and, it is possible to conclude that the SMPM provides an appropriate solution of the granular flow equations proposed by Iverson &amp; Denlinger (2001). Besides, it produces comparable predictions to experimental data and numerical results given by other schemes.</description><subject>Avalanches</subject><subject>Boundary conditions</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Conservation</subject><subject>Conservation laws</subject><subject>Discretization</subject><subject>Earth</subject><subject>Earth pressure</subject><subject>Flow equations</subject><subject>Flumes</subject><subject>Geophysics</subject><subject>Landslides</subject><subject>Lateral pressure</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Pressure</subject><subject>Resolvers</subject><subject>Runge-Kutta method</subject><subject>Simulation</subject><subject>Spectra</subject><subject>Stability</subject><issn>1794-6190</issn><issn>2339-3459</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNjT1Ow0AQRlcIJMzPAehGonay9vonLhEC0aSjj0b2mGy03jU760hwo9QcwQXXwhHBNdVM8b73hLhL5CLJs6xYEvvdYp8qmy3KslipMxGlSlWxyvLqXERJWWVxkVTyUlwx76TMyzTNI_G9Hg_BNQ56smj0J05vQ9ANJujGddpqx0DcUx08GmLo0SMYBNYTg7UevyzYoRsPXtd4nOIeDdp6iwxvHu0EeeLlA_w5Zjdq-1sNH9BR2LoG2Jk9eWidh7Clo5eOWnOqBe0suHb2zi3iG3HRomG6Pd1rcf_89Pr4EvfevQ_EYbNzg59ivElVIWWRyWSl_kf9ADQrdyo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Mario Germán Trujillo-Vela</creator><creator>Escobar-Vargas, Jorge Alberto</creator><creator>Ramos-Cañón, Alfonso Mariano</creator><general>Universidad Nacional de Colombia</general><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20190101</creationdate><title>Método penalizado de multidominios espectrales para la simulación numérica de avalanchas granulares/A spectral multidomain penalty method solver for the numerical simulation of granular avalanches</title><author>Mario Germán Trujillo-Vela ; Escobar-Vargas, Jorge Alberto ; Ramos-Cañón, Alfonso Mariano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23600640183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Avalanches</topic><topic>Boundary conditions</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Conservation</topic><topic>Conservation laws</topic><topic>Discretization</topic><topic>Earth</topic><topic>Earth pressure</topic><topic>Flow equations</topic><topic>Flumes</topic><topic>Geophysics</topic><topic>Landslides</topic><topic>Lateral pressure</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Pressure</topic><topic>Resolvers</topic><topic>Runge-Kutta method</topic><topic>Simulation</topic><topic>Spectra</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mario Germán Trujillo-Vela</creatorcontrib><creatorcontrib>Escobar-Vargas, Jorge Alberto</creatorcontrib><creatorcontrib>Ramos-Cañón, Alfonso Mariano</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Earth sciences research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mario Germán Trujillo-Vela</au><au>Escobar-Vargas, Jorge Alberto</au><au>Ramos-Cañón, Alfonso Mariano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Método penalizado de multidominios espectrales para la simulación numérica de avalanchas granulares/A spectral multidomain penalty method solver for the numerical simulation of granular avalanches</atitle><jtitle>Earth sciences research journal</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>23</volume><issue>4</issue><spage>317</spage><pages>317-</pages><issn>1794-6190</issn><eissn>2339-3459</eissn><abstract>Este trabajo presenta una simulación numérica basada en elementos de alto orden de una avalancha granular experimental, con el fin de evaluar el potencial de estas técnicas espectrales para tratar las leyes de conservación en geofísica. La discretización espacial de estas ecuaciones se desarrolló a través del método penalizado de multidominios espectrales (SMPM). Los términos temporales se discretizaron utilizando un método de Runge-Kutta de preservación de estabilidad fuerte. La estabilidad del esquema numérico se asegura con el uso de un filtro espectral y un coeficiente de presión lateral de tierras constante o regularizado. El caso de prueba es una avalancha granular que se genera en un canal rectangular de pequeña escala con gradiente topográfico. Se realizó un test de independencia de malla para aclarar el orden del error en la conservación de masas producida por los tratamientos aquí implementados. Las predicciones numéricas de las avalanchas granulares se comparan con las mediciones experimentales realizadas por Denlinger &amp; Iverson (2001). Además, se analizaron las condiciones de frontera y parámetros como el coeficiente de presión lateral de tierras y el factor de corrección de momento para observar la incidencia de estos parámetros al resolver las ecuaciones de flujo granular. Este trabajo identifica los beneficios y las debilidades del SMPM para resolver este conjunto de ecuaciones, con lo cual es posible concluir que el SMPM proporciona una solución adecuada de las ecuaciones de flujo granular propuestas por Iverson &amp; Denlinger (2001). También, produce predicciones comparables con datos experimentales y resultados numéricos generados por otros esquemas. This work presents a high-order element-based numerical simulation of an experimental granular avalanche, in order to assess the potential of these spectral techniques to handle conservation laws in geophysics. The spatial discretization of these equations was developed via the spectral multidomain penalty method (SMPM). The temporal terms were discretized using a strong-stability preserving Runge-Kutta method. Stability of the numerical scheme is ensured with the use of a spectral filter and a constant or regularized lateral earth pressure coefficient. The test case is a granular avalanche that is generated in a small-scale rectangular flume with topographical gradient. A grid independence test was performed to clarify the order of the error in the mass conservation produced by the treatments here implemented. The numerical predictions of the granular avalanches are compared with experimental measurements performed by Denlinger &amp; Iverson (2001). Furthermore, the boundary conditions and parameters such as lateral earth pressure coefficients and the momentum correction factor were analyzed to observe the incidence of these features when solving the granular flow equations. This work identifies the benefits and weaknesses of the SMPM to solve this set of equations and, it is possible to conclude that the SMPM provides an appropriate solution of the granular flow equations proposed by Iverson &amp; Denlinger (2001). Besides, it produces comparable predictions to experimental data and numerical results given by other schemes.</abstract><cop>Bogata</cop><pub>Universidad Nacional de Colombia</pub><doi>10.15446/esrj.v23n4.77683</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1794-6190
ispartof Earth sciences research journal, 2019-01, Vol.23 (4), p.317
issn 1794-6190
2339-3459
language eng
recordid cdi_proquest_journals_2360064018
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Avalanches
Boundary conditions
Coefficients
Computer simulation
Conservation
Conservation laws
Discretization
Earth
Earth pressure
Flow equations
Flumes
Geophysics
Landslides
Lateral pressure
Mathematical models
Momentum
Pressure
Resolvers
Runge-Kutta method
Simulation
Spectra
Stability
title Método penalizado de multidominios espectrales para la simulación numérica de avalanchas granulares/A spectral multidomain penalty method solver for the numerical simulation of granular avalanches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M%C3%A9todo%20penalizado%20de%20multidominios%20espectrales%20para%20la%20simulaci%C3%B3n%20num%C3%A9rica%20de%20avalanchas%20granulares/A%20spectral%20multidomain%20penalty%20method%20solver%20for%20the%20numerical%20simulation%20of%20granular%20avalanches&rft.jtitle=Earth%20sciences%20research%20journal&rft.au=Mario%20Germ%C3%A1n%20Trujillo-Vela&rft.date=2019-01-01&rft.volume=23&rft.issue=4&rft.spage=317&rft.pages=317-&rft.issn=1794-6190&rft.eissn=2339-3459&rft_id=info:doi/10.15446/esrj.v23n4.77683&rft_dat=%3Cproquest%3E2360064018%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2360064018&rft_id=info:pmid/&rfr_iscdi=true