Efficient Visual Chemosensor for Hexavalent Chromium via a Controlled Strategy for Signal Amplification in Water
Generally, 3,3′,5,5′-tetramethylbenzidine (TMB) cannot react with hydrogen peroxide (H2O2) in neutral pH or in water at room temperature and pressure. Herein, we found that hexavalent chromium (Cr6+) can trigger TMB reacting with H2O2 (TMB–H2O2) in ultrapure water along with a weak signal output. Th...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-02, Vol.92 (4), p.3426-3433 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3433 |
---|---|
container_issue | 4 |
container_start_page | 3426 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Zhang, Teng Zhang, Shouting Liu, Jia Li, Jing Lu, Xiaoquan |
description | Generally, 3,3′,5,5′-tetramethylbenzidine (TMB) cannot react with hydrogen peroxide (H2O2) in neutral pH or in water at room temperature and pressure. Herein, we found that hexavalent chromium (Cr6+) can trigger TMB reacting with H2O2 (TMB–H2O2) in ultrapure water along with a weak signal output. Then, to implement signal amplification effectively, we designed a ternary nanohybrid material containing graphene oxide (GO) nanosheets, gold nanoparticles (Au NPs), and hyperbranched polyethylenimine (PEI) to form rGO/PEI/Au nanohybrids via chemical bonding. After addition of a trace amount of Cr6+, rGO/PEI/Au nanohybrids can effectively catalyze TMB–H2O2 in ultrapure water; thus, a visual chemosensor and electronic spectrum quantitative analysis method for Cr6+ based on chromium-stimulated peroxidase mimetic activity of rGO/PEI/Au nanohybrids were established. The visual chemosensor exhibits excellent selectivity and interference immunity against 34 other interfering substances with a detection limit as low as 2.14 nM. The visual chemosensor for Cr6+ with a low detection limit and high selectivity is expected to have a potential application in environmental analysis, monitoring, and human health maintenance. |
doi_str_mv | 10.1021/acs.analchem.9b05532 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2360026885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2360026885</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-ac824f32aa4b50f10a60c3ae7a566c6913f11fab09ac50df3d77267d6c06e73e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EglL4A4QssU4Z24nTLlFUHhISi_JYRlPHbl0lcbETBH-PSx9LFqPZnHtndAi5YjBiwNktqjDCFmu11M1oMocsE_yIDFjGIZHjMT8mAwAQCc8Bzsh5CCsAxoDJU3Im2ESmLGUDsp4aY5XVbUffbeixpkXsc0G3wXlq4jzqb_zCekMUS-8a2zf0yyJFWri2866udUVnncdOL37-EjO7iH_Ru2Zd21iOnXUttS39iIi_ICcG66Avd3tI3u6nr8Vj8vzy8FTcPSeYMtElqMY8NYIjpvMMDAOUoATqHDMplZwwYRgzOIcJqgwqI6o85zKvpAKpc6HFkNxse9feffY6dOXK9T7-FUouJACPjrJIpVtKeReC16Zce9ug_ykZlBvNZdRc7jWXO80xdr0r7-eNrg6hvdcIwBbYxA-H_-38BV_8jYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360026885</pqid></control><display><type>article</type><title>Efficient Visual Chemosensor for Hexavalent Chromium via a Controlled Strategy for Signal Amplification in Water</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Teng ; Zhang, Shouting ; Liu, Jia ; Li, Jing ; Lu, Xiaoquan</creator><creatorcontrib>Zhang, Teng ; Zhang, Shouting ; Liu, Jia ; Li, Jing ; Lu, Xiaoquan</creatorcontrib><description>Generally, 3,3′,5,5′-tetramethylbenzidine (TMB) cannot react with hydrogen peroxide (H2O2) in neutral pH or in water at room temperature and pressure. Herein, we found that hexavalent chromium (Cr6+) can trigger TMB reacting with H2O2 (TMB–H2O2) in ultrapure water along with a weak signal output. Then, to implement signal amplification effectively, we designed a ternary nanohybrid material containing graphene oxide (GO) nanosheets, gold nanoparticles (Au NPs), and hyperbranched polyethylenimine (PEI) to form rGO/PEI/Au nanohybrids via chemical bonding. After addition of a trace amount of Cr6+, rGO/PEI/Au nanohybrids can effectively catalyze TMB–H2O2 in ultrapure water; thus, a visual chemosensor and electronic spectrum quantitative analysis method for Cr6+ based on chromium-stimulated peroxidase mimetic activity of rGO/PEI/Au nanohybrids were established. The visual chemosensor exhibits excellent selectivity and interference immunity against 34 other interfering substances with a detection limit as low as 2.14 nM. The visual chemosensor for Cr6+ with a low detection limit and high selectivity is expected to have a potential application in environmental analysis, monitoring, and human health maintenance.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b05532</identifier><identifier>PMID: 31964141</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amplification ; Analytical chemistry ; Benzidines - chemistry ; Chemical bonds ; Chemical sensors ; Chemistry ; Chemoreceptors ; Chromium ; Chromium - analysis ; Environmental monitoring ; Gold ; Gold - chemistry ; Graphene ; Graphite - chemistry ; Hexavalent chromium ; Hydrogen peroxide ; Hydrogen Peroxide - chemistry ; Interference immunity ; Metal Nanoparticles - chemistry ; Nanoparticles ; Organic chemistry ; Peroxidase ; Polyethyleneimine ; Polyethyleneimine - chemistry ; Room temperature ; Selectivity ; Visual signals ; Water Pollutants, Chemical - analysis</subject><ispartof>Analytical chemistry (Washington), 2020-02, Vol.92 (4), p.3426-3433</ispartof><rights>Copyright American Chemical Society Feb 18, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-ac824f32aa4b50f10a60c3ae7a566c6913f11fab09ac50df3d77267d6c06e73e3</citedby><cites>FETCH-LOGICAL-a413t-ac824f32aa4b50f10a60c3ae7a566c6913f11fab09ac50df3d77267d6c06e73e3</cites><orcidid>0000-0003-2375-668X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b05532$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b05532$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31964141$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Zhang, Shouting</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Lu, Xiaoquan</creatorcontrib><title>Efficient Visual Chemosensor for Hexavalent Chromium via a Controlled Strategy for Signal Amplification in Water</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Generally, 3,3′,5,5′-tetramethylbenzidine (TMB) cannot react with hydrogen peroxide (H2O2) in neutral pH or in water at room temperature and pressure. Herein, we found that hexavalent chromium (Cr6+) can trigger TMB reacting with H2O2 (TMB–H2O2) in ultrapure water along with a weak signal output. Then, to implement signal amplification effectively, we designed a ternary nanohybrid material containing graphene oxide (GO) nanosheets, gold nanoparticles (Au NPs), and hyperbranched polyethylenimine (PEI) to form rGO/PEI/Au nanohybrids via chemical bonding. After addition of a trace amount of Cr6+, rGO/PEI/Au nanohybrids can effectively catalyze TMB–H2O2 in ultrapure water; thus, a visual chemosensor and electronic spectrum quantitative analysis method for Cr6+ based on chromium-stimulated peroxidase mimetic activity of rGO/PEI/Au nanohybrids were established. The visual chemosensor exhibits excellent selectivity and interference immunity against 34 other interfering substances with a detection limit as low as 2.14 nM. The visual chemosensor for Cr6+ with a low detection limit and high selectivity is expected to have a potential application in environmental analysis, monitoring, and human health maintenance.</description><subject>Amplification</subject><subject>Analytical chemistry</subject><subject>Benzidines - chemistry</subject><subject>Chemical bonds</subject><subject>Chemical sensors</subject><subject>Chemistry</subject><subject>Chemoreceptors</subject><subject>Chromium</subject><subject>Chromium - analysis</subject><subject>Environmental monitoring</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Hexavalent chromium</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Interference immunity</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Peroxidase</subject><subject>Polyethyleneimine</subject><subject>Polyethyleneimine - chemistry</subject><subject>Room temperature</subject><subject>Selectivity</subject><subject>Visual signals</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EglL4A4QssU4Z24nTLlFUHhISi_JYRlPHbl0lcbETBH-PSx9LFqPZnHtndAi5YjBiwNktqjDCFmu11M1oMocsE_yIDFjGIZHjMT8mAwAQCc8Bzsh5CCsAxoDJU3Im2ESmLGUDsp4aY5XVbUffbeixpkXsc0G3wXlq4jzqb_zCekMUS-8a2zf0yyJFWri2866udUVnncdOL37-EjO7iH_Ru2Zd21iOnXUttS39iIi_ICcG66Avd3tI3u6nr8Vj8vzy8FTcPSeYMtElqMY8NYIjpvMMDAOUoATqHDMplZwwYRgzOIcJqgwqI6o85zKvpAKpc6HFkNxse9feffY6dOXK9T7-FUouJACPjrJIpVtKeReC16Zce9ug_ykZlBvNZdRc7jWXO80xdr0r7-eNrg6hvdcIwBbYxA-H_-38BV_8jYw</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Zhang, Teng</creator><creator>Zhang, Shouting</creator><creator>Liu, Jia</creator><creator>Li, Jing</creator><creator>Lu, Xiaoquan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-2375-668X</orcidid></search><sort><creationdate>20200218</creationdate><title>Efficient Visual Chemosensor for Hexavalent Chromium via a Controlled Strategy for Signal Amplification in Water</title><author>Zhang, Teng ; Zhang, Shouting ; Liu, Jia ; Li, Jing ; Lu, Xiaoquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-ac824f32aa4b50f10a60c3ae7a566c6913f11fab09ac50df3d77267d6c06e73e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplification</topic><topic>Analytical chemistry</topic><topic>Benzidines - chemistry</topic><topic>Chemical bonds</topic><topic>Chemical sensors</topic><topic>Chemistry</topic><topic>Chemoreceptors</topic><topic>Chromium</topic><topic>Chromium - analysis</topic><topic>Environmental monitoring</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Hexavalent chromium</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Interference immunity</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Peroxidase</topic><topic>Polyethyleneimine</topic><topic>Polyethyleneimine - chemistry</topic><topic>Room temperature</topic><topic>Selectivity</topic><topic>Visual signals</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Zhang, Shouting</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Lu, Xiaoquan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Teng</au><au>Zhang, Shouting</au><au>Liu, Jia</au><au>Li, Jing</au><au>Lu, Xiaoquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Visual Chemosensor for Hexavalent Chromium via a Controlled Strategy for Signal Amplification in Water</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-02-18</date><risdate>2020</risdate><volume>92</volume><issue>4</issue><spage>3426</spage><epage>3433</epage><pages>3426-3433</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Generally, 3,3′,5,5′-tetramethylbenzidine (TMB) cannot react with hydrogen peroxide (H2O2) in neutral pH or in water at room temperature and pressure. Herein, we found that hexavalent chromium (Cr6+) can trigger TMB reacting with H2O2 (TMB–H2O2) in ultrapure water along with a weak signal output. Then, to implement signal amplification effectively, we designed a ternary nanohybrid material containing graphene oxide (GO) nanosheets, gold nanoparticles (Au NPs), and hyperbranched polyethylenimine (PEI) to form rGO/PEI/Au nanohybrids via chemical bonding. After addition of a trace amount of Cr6+, rGO/PEI/Au nanohybrids can effectively catalyze TMB–H2O2 in ultrapure water; thus, a visual chemosensor and electronic spectrum quantitative analysis method for Cr6+ based on chromium-stimulated peroxidase mimetic activity of rGO/PEI/Au nanohybrids were established. The visual chemosensor exhibits excellent selectivity and interference immunity against 34 other interfering substances with a detection limit as low as 2.14 nM. The visual chemosensor for Cr6+ with a low detection limit and high selectivity is expected to have a potential application in environmental analysis, monitoring, and human health maintenance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31964141</pmid><doi>10.1021/acs.analchem.9b05532</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2375-668X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-02, Vol.92 (4), p.3426-3433 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_journals_2360026885 |
source | MEDLINE; ACS Publications |
subjects | Amplification Analytical chemistry Benzidines - chemistry Chemical bonds Chemical sensors Chemistry Chemoreceptors Chromium Chromium - analysis Environmental monitoring Gold Gold - chemistry Graphene Graphite - chemistry Hexavalent chromium Hydrogen peroxide Hydrogen Peroxide - chemistry Interference immunity Metal Nanoparticles - chemistry Nanoparticles Organic chemistry Peroxidase Polyethyleneimine Polyethyleneimine - chemistry Room temperature Selectivity Visual signals Water Pollutants, Chemical - analysis |
title | Efficient Visual Chemosensor for Hexavalent Chromium via a Controlled Strategy for Signal Amplification in Water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Visual%20Chemosensor%20for%20Hexavalent%20Chromium%20via%20a%20Controlled%20Strategy%20for%20Signal%20Amplification%20in%20Water&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhang,%20Teng&rft.date=2020-02-18&rft.volume=92&rft.issue=4&rft.spage=3426&rft.epage=3433&rft.pages=3426-3433&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b05532&rft_dat=%3Cproquest_cross%3E2360026885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2360026885&rft_id=info:pmid/31964141&rfr_iscdi=true |