Stochastic assessment of slope failure run-out triggered by earthquake ground motion

Analysis of the run-out of landslides is essential and vital for disaster mitigation. However, accurate run-out analysis is difficult because of the uncertainty of earthquake ground motion and variability of soil properties. To solve this problem, a new run-out assessment framework that combines the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards (Dordrecht) 2020-03, Vol.101 (1), p.87-102
Hauptverfasser: Huang, Yu, Li, Geye, Xiong, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue 1
container_start_page 87
container_title Natural hazards (Dordrecht)
container_volume 101
creator Huang, Yu
Li, Geye
Xiong, Min
description Analysis of the run-out of landslides is essential and vital for disaster mitigation. However, accurate run-out analysis is difficult because of the uncertainty of earthquake ground motion and variability of soil properties. To solve this problem, a new run-out assessment framework that combines the methods of probability density evolution and smoothed particle hydrodynamics is proposed. This novel framework can consider multiple stochastic factors and different slope failure models of changing sliding surfaces. We used a homogeneous 2D slope as an example and generated stochastic seismic loading samples with an intensity-frequency non-stationary ground motion model. Soil property parameters (cohesion and internal friction angle) were assumed to obey logarithmic normal distribution, and run-out parameters were evolved. Moreover, based on an equivalent extreme event, the distributions of final run-out parameters were obtained. In an example with slope height of 100 m and angle of 45°, the probability that the run-out distance is
doi_str_mv 10.1007/s11069-020-03863-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2359906159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359906159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-223d20670ac4e0dae0ceb9a5391eff4df46ec926e63978b216fd17a9c13fa5dd3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOduLUI6r4kioxUCQ2y4nPbUobt7Yz9N8TCBIb0w33Pu_pHkKuOdxygOoucQ5KMxDAQM6UZNUJmfCykgxmBZySCWjBhxV8nJOLlDYAnCuhJ2T5lkOztim3DbUpYUo77DINnqZt2CP1tt32EWnsOxb6THNsVyuM6Gh9pGhjXh96-4l0FUPfOboLuQ3dJTnzdpvw6ndOyfvjw3L-zBavTy_z-wWzshCZCSGdAFWBbQoEZxEarLUtpebofeF8obDRQqGSuprVgivveGV1w6W3pXNySm7G3n0Mhx5TNpvQx244aYQstQbFSz2kxJhqYkgpojf72O5sPBoO5tueGe2ZwZ75sWeqAZIjlIZwN3z8V_0P9QWoEHQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359906159</pqid></control><display><type>article</type><title>Stochastic assessment of slope failure run-out triggered by earthquake ground motion</title><source>Springer Nature - Complete Springer Journals</source><creator>Huang, Yu ; Li, Geye ; Xiong, Min</creator><creatorcontrib>Huang, Yu ; Li, Geye ; Xiong, Min</creatorcontrib><description>Analysis of the run-out of landslides is essential and vital for disaster mitigation. However, accurate run-out analysis is difficult because of the uncertainty of earthquake ground motion and variability of soil properties. To solve this problem, a new run-out assessment framework that combines the methods of probability density evolution and smoothed particle hydrodynamics is proposed. This novel framework can consider multiple stochastic factors and different slope failure models of changing sliding surfaces. We used a homogeneous 2D slope as an example and generated stochastic seismic loading samples with an intensity-frequency non-stationary ground motion model. Soil property parameters (cohesion and internal friction angle) were assumed to obey logarithmic normal distribution, and run-out parameters were evolved. Moreover, based on an equivalent extreme event, the distributions of final run-out parameters were obtained. In an example with slope height of 100 m and angle of 45°, the probability that the run-out distance is &lt; 150 m is 90%. The probability of flow depth more than 24.5 m was about 50%. The new framework has the potential to provide references for coordinating relief efforts after landslides by predicting the extent and scope of the earthquake-induced hazard; thereby minimizing casualties and property losses caused by geological disasters triggered by earthquakes.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-020-03863-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Casualties ; Civil Engineering ; Computational fluid dynamics ; Disaster management ; Disasters ; Earth and Environmental Science ; Earth Sciences ; Earthquake loads ; Earthquake prediction ; Earthquakes ; Emergency preparedness ; Environmental Management ; Evolution ; Failure analysis ; Fluid flow ; Frameworks ; Geological hazards ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Ground motion ; Hydrodynamics ; Hydrogeology ; Internal friction ; Landslides ; Landslides &amp; mudslides ; Mathematical models ; Mitigation ; Natural Hazards ; Normal distribution ; Original Paper ; Parameters ; Probabilistic methods ; Probability theory ; Seismic activity ; Seismic response ; Slopes ; Smooth particle hydrodynamics ; Soil properties ; Soils ; Statistical analysis ; Two dimensional models</subject><ispartof>Natural hazards (Dordrecht), 2020-03, Vol.101 (1), p.87-102</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Natural Hazards is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-223d20670ac4e0dae0ceb9a5391eff4df46ec926e63978b216fd17a9c13fa5dd3</citedby><cites>FETCH-LOGICAL-a342t-223d20670ac4e0dae0ceb9a5391eff4df46ec926e63978b216fd17a9c13fa5dd3</cites><orcidid>0000-0002-9935-7717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-020-03863-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-020-03863-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Li, Geye</creatorcontrib><creatorcontrib>Xiong, Min</creatorcontrib><title>Stochastic assessment of slope failure run-out triggered by earthquake ground motion</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Analysis of the run-out of landslides is essential and vital for disaster mitigation. However, accurate run-out analysis is difficult because of the uncertainty of earthquake ground motion and variability of soil properties. To solve this problem, a new run-out assessment framework that combines the methods of probability density evolution and smoothed particle hydrodynamics is proposed. This novel framework can consider multiple stochastic factors and different slope failure models of changing sliding surfaces. We used a homogeneous 2D slope as an example and generated stochastic seismic loading samples with an intensity-frequency non-stationary ground motion model. Soil property parameters (cohesion and internal friction angle) were assumed to obey logarithmic normal distribution, and run-out parameters were evolved. Moreover, based on an equivalent extreme event, the distributions of final run-out parameters were obtained. In an example with slope height of 100 m and angle of 45°, the probability that the run-out distance is &lt; 150 m is 90%. The probability of flow depth more than 24.5 m was about 50%. The new framework has the potential to provide references for coordinating relief efforts after landslides by predicting the extent and scope of the earthquake-induced hazard; thereby minimizing casualties and property losses caused by geological disasters triggered by earthquakes.</description><subject>Casualties</subject><subject>Civil Engineering</subject><subject>Computational fluid dynamics</subject><subject>Disaster management</subject><subject>Disasters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquake loads</subject><subject>Earthquake prediction</subject><subject>Earthquakes</subject><subject>Emergency preparedness</subject><subject>Environmental Management</subject><subject>Evolution</subject><subject>Failure analysis</subject><subject>Fluid flow</subject><subject>Frameworks</subject><subject>Geological hazards</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hydrodynamics</subject><subject>Hydrogeology</subject><subject>Internal friction</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Mathematical models</subject><subject>Mitigation</subject><subject>Natural Hazards</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Seismic activity</subject><subject>Seismic response</subject><subject>Slopes</subject><subject>Smooth particle hydrodynamics</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Statistical analysis</subject><subject>Two dimensional models</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMRvOduLUI6r4kioxUCQ2y4nPbUobt7Yz9N8TCBIb0w33Pu_pHkKuOdxygOoucQ5KMxDAQM6UZNUJmfCykgxmBZySCWjBhxV8nJOLlDYAnCuhJ2T5lkOztim3DbUpYUo77DINnqZt2CP1tt32EWnsOxb6THNsVyuM6Gh9pGhjXh96-4l0FUPfOboLuQ3dJTnzdpvw6ndOyfvjw3L-zBavTy_z-wWzshCZCSGdAFWBbQoEZxEarLUtpebofeF8obDRQqGSuprVgivveGV1w6W3pXNySm7G3n0Mhx5TNpvQx244aYQstQbFSz2kxJhqYkgpojf72O5sPBoO5tueGe2ZwZ75sWeqAZIjlIZwN3z8V_0P9QWoEHQE</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Huang, Yu</creator><creator>Li, Geye</creator><creator>Xiong, Min</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9935-7717</orcidid></search><sort><creationdate>20200301</creationdate><title>Stochastic assessment of slope failure run-out triggered by earthquake ground motion</title><author>Huang, Yu ; Li, Geye ; Xiong, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-223d20670ac4e0dae0ceb9a5391eff4df46ec926e63978b216fd17a9c13fa5dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Casualties</topic><topic>Civil Engineering</topic><topic>Computational fluid dynamics</topic><topic>Disaster management</topic><topic>Disasters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquake loads</topic><topic>Earthquake prediction</topic><topic>Earthquakes</topic><topic>Emergency preparedness</topic><topic>Environmental Management</topic><topic>Evolution</topic><topic>Failure analysis</topic><topic>Fluid flow</topic><topic>Frameworks</topic><topic>Geological hazards</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hydrodynamics</topic><topic>Hydrogeology</topic><topic>Internal friction</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Mathematical models</topic><topic>Mitigation</topic><topic>Natural Hazards</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Seismic activity</topic><topic>Seismic response</topic><topic>Slopes</topic><topic>Smooth particle hydrodynamics</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Statistical analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Li, Geye</creatorcontrib><creatorcontrib>Xiong, Min</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yu</au><au>Li, Geye</au><au>Xiong, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic assessment of slope failure run-out triggered by earthquake ground motion</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>101</volume><issue>1</issue><spage>87</spage><epage>102</epage><pages>87-102</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>Analysis of the run-out of landslides is essential and vital for disaster mitigation. However, accurate run-out analysis is difficult because of the uncertainty of earthquake ground motion and variability of soil properties. To solve this problem, a new run-out assessment framework that combines the methods of probability density evolution and smoothed particle hydrodynamics is proposed. This novel framework can consider multiple stochastic factors and different slope failure models of changing sliding surfaces. We used a homogeneous 2D slope as an example and generated stochastic seismic loading samples with an intensity-frequency non-stationary ground motion model. Soil property parameters (cohesion and internal friction angle) were assumed to obey logarithmic normal distribution, and run-out parameters were evolved. Moreover, based on an equivalent extreme event, the distributions of final run-out parameters were obtained. In an example with slope height of 100 m and angle of 45°, the probability that the run-out distance is &lt; 150 m is 90%. The probability of flow depth more than 24.5 m was about 50%. The new framework has the potential to provide references for coordinating relief efforts after landslides by predicting the extent and scope of the earthquake-induced hazard; thereby minimizing casualties and property losses caused by geological disasters triggered by earthquakes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-020-03863-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9935-7717</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-030X
ispartof Natural hazards (Dordrecht), 2020-03, Vol.101 (1), p.87-102
issn 0921-030X
1573-0840
language eng
recordid cdi_proquest_journals_2359906159
source Springer Nature - Complete Springer Journals
subjects Casualties
Civil Engineering
Computational fluid dynamics
Disaster management
Disasters
Earth and Environmental Science
Earth Sciences
Earthquake loads
Earthquake prediction
Earthquakes
Emergency preparedness
Environmental Management
Evolution
Failure analysis
Fluid flow
Frameworks
Geological hazards
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Ground motion
Hydrodynamics
Hydrogeology
Internal friction
Landslides
Landslides & mudslides
Mathematical models
Mitigation
Natural Hazards
Normal distribution
Original Paper
Parameters
Probabilistic methods
Probability theory
Seismic activity
Seismic response
Slopes
Smooth particle hydrodynamics
Soil properties
Soils
Statistical analysis
Two dimensional models
title Stochastic assessment of slope failure run-out triggered by earthquake ground motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20assessment%20of%20slope%20failure%20run-out%20triggered%20by%20earthquake%20ground%20motion&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Huang,%20Yu&rft.date=2020-03-01&rft.volume=101&rft.issue=1&rft.spage=87&rft.epage=102&rft.pages=87-102&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-020-03863-7&rft_dat=%3Cproquest_cross%3E2359906159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359906159&rft_id=info:pmid/&rfr_iscdi=true