A Newton Method-Based Distributed Algorithm for Multi-Area Economic Dispatch

In this paper, we propose a novel Newton method-based distributed algorithm (NMDA), which is also effective in solving the general single-area EDP (SAEDP), to deal with the multi-area economic dispatch problem (MAEDP), of which the focus is to minimize the total generation cost in the presence of sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2020-03, Vol.35 (2), p.986-996
Hauptverfasser: Qin, Jiahu, Wan, Yanni, Yu, Xinghuo, Kang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 996
container_issue 2
container_start_page 986
container_title IEEE transactions on power systems
container_volume 35
creator Qin, Jiahu
Wan, Yanni
Yu, Xinghuo
Kang, Yu
description In this paper, we propose a novel Newton method-based distributed algorithm (NMDA), which is also effective in solving the general single-area EDP (SAEDP), to deal with the multi-area economic dispatch problem (MAEDP), of which the focus is to minimize the total generation cost in the presence of system and generator constraints. To develop the NMDA, we first introduce a virtual SAEDP formulation to fit the framework of Newton method (NM), and then employ the average consensus protocol to obtain the global information needed to execute the NM and backtracking line search algorithm in a distributed manner. Compared with the centralized methods that can yield the optimal solution, the proposed NMDA provides a suboptimal solution with a very small relative error. The NMDA ensures the instantaneous system power balance throughout the iteration process while the centralized methods compared in this paper cannot do so. We also provide a rigorous theoretical analysis for the convergence of NMDA. Moreover, the advantage of NMDA in terms of the convergence speed is validated by comparing with other distributed methods such as the gradient-based ADMM (G-ADMM) and quasi Newton-based primal dual interior point (QN-PDIP) method. Finally, case studies demonstrate the effectiveness and scalability of the proposed distributed algorithm.
doi_str_mv 10.1109/TPWRS.2019.2943344
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2359905421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8847469</ieee_id><sourcerecordid>2359905421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-5421b1c47f385a59610104f54b815f4bde3b40b029431632b4c7eb98117553b73</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwB-ASibPL-pXYx1DKQyoPQRFHK04d6qqti-0I8e9JaMVpV9qZHc2H0DmBESGgrmYvH69vIwpEjajijHF-gAZECIkhL9QhGoCUAksl4BidxLgEgLw7DNC0zJ7sd_Kb7NGmhZ_j6yraeXbjYgrOtKnby9WnDy4t1lnjQ_bYrpLDZbBVNqn9xq9d3au3VaoXp-ioqVbRnu3nEL3fTmbjezx9vnsYl1NcUyUSFpwSQ2peNEyKSqicAAHeCG4kEQ03c8sMBwN9E5IzanhdWKMkIYUQzBRsiC53f7fBf7U2Jr30bdh0kZoyoRT0CZ2K7lR18DEG2-htcOsq_GgCuqem_6jpnpreU-tMFzuTs9b-G6TkBc8V-wXDdmbj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359905421</pqid></control><display><type>article</type><title>A Newton Method-Based Distributed Algorithm for Multi-Area Economic Dispatch</title><source>IEEE Electronic Library (IEL)</source><creator>Qin, Jiahu ; Wan, Yanni ; Yu, Xinghuo ; Kang, Yu</creator><creatorcontrib>Qin, Jiahu ; Wan, Yanni ; Yu, Xinghuo ; Kang, Yu</creatorcontrib><description>In this paper, we propose a novel Newton method-based distributed algorithm (NMDA), which is also effective in solving the general single-area EDP (SAEDP), to deal with the multi-area economic dispatch problem (MAEDP), of which the focus is to minimize the total generation cost in the presence of system and generator constraints. To develop the NMDA, we first introduce a virtual SAEDP formulation to fit the framework of Newton method (NM), and then employ the average consensus protocol to obtain the global information needed to execute the NM and backtracking line search algorithm in a distributed manner. Compared with the centralized methods that can yield the optimal solution, the proposed NMDA provides a suboptimal solution with a very small relative error. The NMDA ensures the instantaneous system power balance throughout the iteration process while the centralized methods compared in this paper cannot do so. We also provide a rigorous theoretical analysis for the convergence of NMDA. Moreover, the advantage of NMDA in terms of the convergence speed is validated by comparing with other distributed methods such as the gradient-based ADMM (G-ADMM) and quasi Newton-based primal dual interior point (QN-PDIP) method. Finally, case studies demonstrate the effectiveness and scalability of the proposed distributed algorithm.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2019.2943344</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automatic generation control ; average consensus ; Convergence ; Distributed algorithms ; Economics ; Generators ; Methods ; Multi-area economic dispatch ; Newton method ; Newton methods ; Nonlinear programming ; power balance ; Power dispatch ; Propagation losses ; Search algorithms ; tie line constraints</subject><ispartof>IEEE transactions on power systems, 2020-03, Vol.35 (2), p.986-996</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-5421b1c47f385a59610104f54b815f4bde3b40b029431632b4c7eb98117553b73</citedby><cites>FETCH-LOGICAL-c295t-5421b1c47f385a59610104f54b815f4bde3b40b029431632b4c7eb98117553b73</cites><orcidid>0000-0002-8706-3252 ; 0000-0001-7580-0836 ; 0000-0001-8093-9787 ; 0000-0002-2768-2895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8847469$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8847469$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin, Jiahu</creatorcontrib><creatorcontrib>Wan, Yanni</creatorcontrib><creatorcontrib>Yu, Xinghuo</creatorcontrib><creatorcontrib>Kang, Yu</creatorcontrib><title>A Newton Method-Based Distributed Algorithm for Multi-Area Economic Dispatch</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>In this paper, we propose a novel Newton method-based distributed algorithm (NMDA), which is also effective in solving the general single-area EDP (SAEDP), to deal with the multi-area economic dispatch problem (MAEDP), of which the focus is to minimize the total generation cost in the presence of system and generator constraints. To develop the NMDA, we first introduce a virtual SAEDP formulation to fit the framework of Newton method (NM), and then employ the average consensus protocol to obtain the global information needed to execute the NM and backtracking line search algorithm in a distributed manner. Compared with the centralized methods that can yield the optimal solution, the proposed NMDA provides a suboptimal solution with a very small relative error. The NMDA ensures the instantaneous system power balance throughout the iteration process while the centralized methods compared in this paper cannot do so. We also provide a rigorous theoretical analysis for the convergence of NMDA. Moreover, the advantage of NMDA in terms of the convergence speed is validated by comparing with other distributed methods such as the gradient-based ADMM (G-ADMM) and quasi Newton-based primal dual interior point (QN-PDIP) method. Finally, case studies demonstrate the effectiveness and scalability of the proposed distributed algorithm.</description><subject>Algorithms</subject><subject>Automatic generation control</subject><subject>average consensus</subject><subject>Convergence</subject><subject>Distributed algorithms</subject><subject>Economics</subject><subject>Generators</subject><subject>Methods</subject><subject>Multi-area economic dispatch</subject><subject>Newton method</subject><subject>Newton methods</subject><subject>Nonlinear programming</subject><subject>power balance</subject><subject>Power dispatch</subject><subject>Propagation losses</subject><subject>Search algorithms</subject><subject>tie line constraints</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwB-ASibPL-pXYx1DKQyoPQRFHK04d6qqti-0I8e9JaMVpV9qZHc2H0DmBESGgrmYvH69vIwpEjajijHF-gAZECIkhL9QhGoCUAksl4BidxLgEgLw7DNC0zJ7sd_Kb7NGmhZ_j6yraeXbjYgrOtKnby9WnDy4t1lnjQ_bYrpLDZbBVNqn9xq9d3au3VaoXp-ioqVbRnu3nEL3fTmbjezx9vnsYl1NcUyUSFpwSQ2peNEyKSqicAAHeCG4kEQ03c8sMBwN9E5IzanhdWKMkIYUQzBRsiC53f7fBf7U2Jr30bdh0kZoyoRT0CZ2K7lR18DEG2-htcOsq_GgCuqem_6jpnpreU-tMFzuTs9b-G6TkBc8V-wXDdmbj</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Qin, Jiahu</creator><creator>Wan, Yanni</creator><creator>Yu, Xinghuo</creator><creator>Kang, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8706-3252</orcidid><orcidid>https://orcid.org/0000-0001-7580-0836</orcidid><orcidid>https://orcid.org/0000-0001-8093-9787</orcidid><orcidid>https://orcid.org/0000-0002-2768-2895</orcidid></search><sort><creationdate>202003</creationdate><title>A Newton Method-Based Distributed Algorithm for Multi-Area Economic Dispatch</title><author>Qin, Jiahu ; Wan, Yanni ; Yu, Xinghuo ; Kang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-5421b1c47f385a59610104f54b815f4bde3b40b029431632b4c7eb98117553b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automatic generation control</topic><topic>average consensus</topic><topic>Convergence</topic><topic>Distributed algorithms</topic><topic>Economics</topic><topic>Generators</topic><topic>Methods</topic><topic>Multi-area economic dispatch</topic><topic>Newton method</topic><topic>Newton methods</topic><topic>Nonlinear programming</topic><topic>power balance</topic><topic>Power dispatch</topic><topic>Propagation losses</topic><topic>Search algorithms</topic><topic>tie line constraints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jiahu</creatorcontrib><creatorcontrib>Wan, Yanni</creatorcontrib><creatorcontrib>Yu, Xinghuo</creatorcontrib><creatorcontrib>Kang, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Jiahu</au><au>Wan, Yanni</au><au>Yu, Xinghuo</au><au>Kang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Newton Method-Based Distributed Algorithm for Multi-Area Economic Dispatch</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2020-03</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><spage>986</spage><epage>996</epage><pages>986-996</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>In this paper, we propose a novel Newton method-based distributed algorithm (NMDA), which is also effective in solving the general single-area EDP (SAEDP), to deal with the multi-area economic dispatch problem (MAEDP), of which the focus is to minimize the total generation cost in the presence of system and generator constraints. To develop the NMDA, we first introduce a virtual SAEDP formulation to fit the framework of Newton method (NM), and then employ the average consensus protocol to obtain the global information needed to execute the NM and backtracking line search algorithm in a distributed manner. Compared with the centralized methods that can yield the optimal solution, the proposed NMDA provides a suboptimal solution with a very small relative error. The NMDA ensures the instantaneous system power balance throughout the iteration process while the centralized methods compared in this paper cannot do so. We also provide a rigorous theoretical analysis for the convergence of NMDA. Moreover, the advantage of NMDA in terms of the convergence speed is validated by comparing with other distributed methods such as the gradient-based ADMM (G-ADMM) and quasi Newton-based primal dual interior point (QN-PDIP) method. Finally, case studies demonstrate the effectiveness and scalability of the proposed distributed algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2019.2943344</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8706-3252</orcidid><orcidid>https://orcid.org/0000-0001-7580-0836</orcidid><orcidid>https://orcid.org/0000-0001-8093-9787</orcidid><orcidid>https://orcid.org/0000-0002-2768-2895</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2020-03, Vol.35 (2), p.986-996
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2359905421
source IEEE Electronic Library (IEL)
subjects Algorithms
Automatic generation control
average consensus
Convergence
Distributed algorithms
Economics
Generators
Methods
Multi-area economic dispatch
Newton method
Newton methods
Nonlinear programming
power balance
Power dispatch
Propagation losses
Search algorithms
tie line constraints
title A Newton Method-Based Distributed Algorithm for Multi-Area Economic Dispatch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Newton%20Method-Based%20Distributed%20Algorithm%20for%20Multi-Area%20Economic%20Dispatch&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Qin,%20Jiahu&rft.date=2020-03&rft.volume=35&rft.issue=2&rft.spage=986&rft.epage=996&rft.pages=986-996&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2019.2943344&rft_dat=%3Cproquest_RIE%3E2359905421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359905421&rft_id=info:pmid/&rft_ieee_id=8847469&rfr_iscdi=true