Communication-Failure-Resilient Distributed Frequency Control in Smart Grids: Part I: Architecture and Distributed Algorithms
Distributed algorithms have been proposed as options to scale control propositions to the massive number of intelligent energy devices, sub-systems, and distributed energy resources being integrated into the electricity grid. Distributed algorithms rely on the communication network for exchanging in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2020-03, Vol.35 (2), p.1317-1326 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Distributed algorithms have been proposed as options to scale control propositions to the massive number of intelligent energy devices, sub-systems, and distributed energy resources being integrated into the electricity grid. Distributed algorithms rely on the communication network for exchanging information. Failures in the communication network can jeopardize distributed decision-making and in the worst-case scenario can lead to system-level stability problems. This paper proposes a communication-failure-resilient architecture for distributed operation and control in smart grids with hybrid producer/consumer (prosumer) agents. We describe the relations between system-wide performance and communication failures and identify topological conditions on the cyber-physical network, under which prosumers can perform key operating tasks, such as distributed frequency regulation through an imperfect communication network. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2019.2943820 |