Small-Signal Analysis of Photovoltaic Inverter With Impedance-Compensated Phase-Locked Loop in Weak Grid
The grid-connection point of photovoltaic inverters may exhibit inductive characteristics (i.e., a weak grid) due to long transmission cables as well as multiple transformers. A large grid impedance can arouse impedance-based stability problems, sustained resonances and impose power-delivery limits....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on energy conversion 2020-03, Vol.35 (1), p.347-355 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 1 |
container_start_page | 347 |
container_title | IEEE transactions on energy conversion |
container_volume | 35 |
creator | Berg, Matias Aapro, Aapo Luhtala, Roni Messo, Tuomas |
description | The grid-connection point of photovoltaic inverters may exhibit inductive characteristics (i.e., a weak grid) due to long transmission cables as well as multiple transformers. A large grid impedance can arouse impedance-based stability problems, sustained resonances and impose power-delivery limits. This paper discusses an impedance-compensated synchronous reference- frame-PLL-angle-correction method. The method presented in this paper compensates the PLL angle according to estimated or measured grid impedance in order to achieve improved performance in weak grids. Due to the lack of explicit small-signal impedance models around the aforementioned topic, this paper presents a complete small-signal transfer function model to analyze the impedance-based stability of the PLL-angle compensation method. The results are validated with real-time hardware-in-the-loop simulations and laboratory experiments. |
doi_str_mv | 10.1109/TEC.2019.2944947 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2359905103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8863953</ieee_id><sourcerecordid>2359905103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-9ac91ff8760a90e2d0ffafbfa67c3cc4afc76429e1e7b93bf4037f54b9a4be6b3</originalsourceid><addsrcrecordid>eNo9kM9rwjAUx8PYYM7tPtglsHNd0iRt31GKc0JhAx0eSxpfZrU2LqmC__0qyi7vB3y-D96HkGfORpwzeFtM8lHMOIxikBJkekMGXKksYkzBLRmwLFNRBgnck4cQNoxxqWI-IOv5TjdNNK9_Wt3QcV9OoQ7UWfq1dp07uqbTtaGz9oi-Q0-Xdbems90eV7o1GOWuH9ugO1z1AR0wKpzZ9kvh3J7WLV2i3tKpr1eP5M7qJuDTtQ_J9_tkkX9Exed0lo-LyMTAuwi0AW5tliZMA8N4xazVtrI6SY0wRmpr0kTGgBzTCkRlJROpVbICLStMKjEkr5e7e-9-Dxi6cuMOvv8rlLFQAExxJnqKXSjjXQgebbn39U77U8lZefZZ9j7Ls8_y6rOPvFwiNSL-41mWCFBC_AGxpnJ-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359905103</pqid></control><display><type>article</type><title>Small-Signal Analysis of Photovoltaic Inverter With Impedance-Compensated Phase-Locked Loop in Weak Grid</title><source>IEEE Electronic Library (IEL)</source><creator>Berg, Matias ; Aapro, Aapo ; Luhtala, Roni ; Messo, Tuomas</creator><creatorcontrib>Berg, Matias ; Aapro, Aapo ; Luhtala, Roni ; Messo, Tuomas</creatorcontrib><description>The grid-connection point of photovoltaic inverters may exhibit inductive characteristics (i.e., a weak grid) due to long transmission cables as well as multiple transformers. A large grid impedance can arouse impedance-based stability problems, sustained resonances and impose power-delivery limits. This paper discusses an impedance-compensated synchronous reference- frame-PLL-angle-correction method. The method presented in this paper compensates the PLL angle according to estimated or measured grid impedance in order to achieve improved performance in weak grids. Due to the lack of explicit small-signal impedance models around the aforementioned topic, this paper presents a complete small-signal transfer function model to analyze the impedance-based stability of the PLL-angle compensation method. The results are validated with real-time hardware-in-the-loop simulations and laboratory experiments.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2019.2944947</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cables ; Computer simulation ; Frequency response ; Hardware-in-the-loop simulation ; Impedance ; Inverters ; Phase locked loops ; Phase locked systems ; phase-locked loop ; Power system stability ; Small signal analysis ; Stability analysis ; Transfer functions ; weak grid</subject><ispartof>IEEE transactions on energy conversion, 2020-03, Vol.35 (1), p.347-355</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-9ac91ff8760a90e2d0ffafbfa67c3cc4afc76429e1e7b93bf4037f54b9a4be6b3</citedby><cites>FETCH-LOGICAL-c291t-9ac91ff8760a90e2d0ffafbfa67c3cc4afc76429e1e7b93bf4037f54b9a4be6b3</cites><orcidid>0000-0002-5299-0558 ; 0000-0002-3327-1662 ; 0000-0003-4357-1535 ; 0000-0003-2653-9736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8863953$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8863953$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Berg, Matias</creatorcontrib><creatorcontrib>Aapro, Aapo</creatorcontrib><creatorcontrib>Luhtala, Roni</creatorcontrib><creatorcontrib>Messo, Tuomas</creatorcontrib><title>Small-Signal Analysis of Photovoltaic Inverter With Impedance-Compensated Phase-Locked Loop in Weak Grid</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>The grid-connection point of photovoltaic inverters may exhibit inductive characteristics (i.e., a weak grid) due to long transmission cables as well as multiple transformers. A large grid impedance can arouse impedance-based stability problems, sustained resonances and impose power-delivery limits. This paper discusses an impedance-compensated synchronous reference- frame-PLL-angle-correction method. The method presented in this paper compensates the PLL angle according to estimated or measured grid impedance in order to achieve improved performance in weak grids. Due to the lack of explicit small-signal impedance models around the aforementioned topic, this paper presents a complete small-signal transfer function model to analyze the impedance-based stability of the PLL-angle compensation method. The results are validated with real-time hardware-in-the-loop simulations and laboratory experiments.</description><subject>Cables</subject><subject>Computer simulation</subject><subject>Frequency response</subject><subject>Hardware-in-the-loop simulation</subject><subject>Impedance</subject><subject>Inverters</subject><subject>Phase locked loops</subject><subject>Phase locked systems</subject><subject>phase-locked loop</subject><subject>Power system stability</subject><subject>Small signal analysis</subject><subject>Stability analysis</subject><subject>Transfer functions</subject><subject>weak grid</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9rwjAUx8PYYM7tPtglsHNd0iRt31GKc0JhAx0eSxpfZrU2LqmC__0qyi7vB3y-D96HkGfORpwzeFtM8lHMOIxikBJkekMGXKksYkzBLRmwLFNRBgnck4cQNoxxqWI-IOv5TjdNNK9_Wt3QcV9OoQ7UWfq1dp07uqbTtaGz9oi-Q0-Xdbems90eV7o1GOWuH9ugO1z1AR0wKpzZ9kvh3J7WLV2i3tKpr1eP5M7qJuDTtQ_J9_tkkX9Exed0lo-LyMTAuwi0AW5tliZMA8N4xazVtrI6SY0wRmpr0kTGgBzTCkRlJROpVbICLStMKjEkr5e7e-9-Dxi6cuMOvv8rlLFQAExxJnqKXSjjXQgebbn39U77U8lZefZZ9j7Ls8_y6rOPvFwiNSL-41mWCFBC_AGxpnJ-</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Berg, Matias</creator><creator>Aapro, Aapo</creator><creator>Luhtala, Roni</creator><creator>Messo, Tuomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5299-0558</orcidid><orcidid>https://orcid.org/0000-0002-3327-1662</orcidid><orcidid>https://orcid.org/0000-0003-4357-1535</orcidid><orcidid>https://orcid.org/0000-0003-2653-9736</orcidid></search><sort><creationdate>202003</creationdate><title>Small-Signal Analysis of Photovoltaic Inverter With Impedance-Compensated Phase-Locked Loop in Weak Grid</title><author>Berg, Matias ; Aapro, Aapo ; Luhtala, Roni ; Messo, Tuomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-9ac91ff8760a90e2d0ffafbfa67c3cc4afc76429e1e7b93bf4037f54b9a4be6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cables</topic><topic>Computer simulation</topic><topic>Frequency response</topic><topic>Hardware-in-the-loop simulation</topic><topic>Impedance</topic><topic>Inverters</topic><topic>Phase locked loops</topic><topic>Phase locked systems</topic><topic>phase-locked loop</topic><topic>Power system stability</topic><topic>Small signal analysis</topic><topic>Stability analysis</topic><topic>Transfer functions</topic><topic>weak grid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berg, Matias</creatorcontrib><creatorcontrib>Aapro, Aapo</creatorcontrib><creatorcontrib>Luhtala, Roni</creatorcontrib><creatorcontrib>Messo, Tuomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Berg, Matias</au><au>Aapro, Aapo</au><au>Luhtala, Roni</au><au>Messo, Tuomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-Signal Analysis of Photovoltaic Inverter With Impedance-Compensated Phase-Locked Loop in Weak Grid</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2020-03</date><risdate>2020</risdate><volume>35</volume><issue>1</issue><spage>347</spage><epage>355</epage><pages>347-355</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>The grid-connection point of photovoltaic inverters may exhibit inductive characteristics (i.e., a weak grid) due to long transmission cables as well as multiple transformers. A large grid impedance can arouse impedance-based stability problems, sustained resonances and impose power-delivery limits. This paper discusses an impedance-compensated synchronous reference- frame-PLL-angle-correction method. The method presented in this paper compensates the PLL angle according to estimated or measured grid impedance in order to achieve improved performance in weak grids. Due to the lack of explicit small-signal impedance models around the aforementioned topic, this paper presents a complete small-signal transfer function model to analyze the impedance-based stability of the PLL-angle compensation method. The results are validated with real-time hardware-in-the-loop simulations and laboratory experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2019.2944947</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5299-0558</orcidid><orcidid>https://orcid.org/0000-0002-3327-1662</orcidid><orcidid>https://orcid.org/0000-0003-4357-1535</orcidid><orcidid>https://orcid.org/0000-0003-2653-9736</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8969 |
ispartof | IEEE transactions on energy conversion, 2020-03, Vol.35 (1), p.347-355 |
issn | 0885-8969 1558-0059 |
language | eng |
recordid | cdi_proquest_journals_2359905103 |
source | IEEE Electronic Library (IEL) |
subjects | Cables Computer simulation Frequency response Hardware-in-the-loop simulation Impedance Inverters Phase locked loops Phase locked systems phase-locked loop Power system stability Small signal analysis Stability analysis Transfer functions weak grid |
title | Small-Signal Analysis of Photovoltaic Inverter With Impedance-Compensated Phase-Locked Loop in Weak Grid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-Signal%20Analysis%20of%20Photovoltaic%20Inverter%20With%20Impedance-Compensated%20Phase-Locked%20Loop%20in%20Weak%20Grid&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Berg,%20Matias&rft.date=2020-03&rft.volume=35&rft.issue=1&rft.spage=347&rft.epage=355&rft.pages=347-355&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2019.2944947&rft_dat=%3Cproquest_RIE%3E2359905103%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359905103&rft_id=info:pmid/&rft_ieee_id=8863953&rfr_iscdi=true |