Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback

This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees converg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-08
Hauptverfasser: Vasilopoulos, Vasileios, Pavlakos, Georgios, Schmeckpeper, Karl, Daniilidis, Kostas, Koditschek, Daniel E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Vasilopoulos, Vasileios
Pavlakos, Georgios
Schmeckpeper, Karl
Daniilidis, Kostas
Koditschek, Daniel E
description This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees convergence to an arbitrarily specified goal, avoiding collisions along the way with fixed but arbitrarily placed instances from the catalogue as well as completely unknown fixed obstacles so long as they are strongly convex and well separated. We illustrate the generic robustness properties of such deterministic reactive planners as well as the relatively modest computational cost of this algorithm by supplementing an extensive numerical study with physical implementation on both a wheeled and legged platform in different settings.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2359838604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359838604</sourcerecordid><originalsourceid>FETCH-proquest_journals_23598386043</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCIp6hwHXhZpYrWuxuJLiz7qOdZSp6VSTtODtdeEBXH2L93pqqI2ZRelc64GaeF_FcawXS50kZqjOe8IycEeww47vGLgRYIEcXWC09g0Z1mwZHeQW5ctGOnaN1CTBw8mz3OFANUrgEnJyJT1DixYyousFy8dY9W9oPU1-jtQ02xzX2-jpmldLPhRV0zr5pkKbZJWadBHPzX_XBxIsRTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359838604</pqid></control><display><type>article</type><title>Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback</title><source>Free E- Journals</source><creator>Vasilopoulos, Vasileios ; Pavlakos, Georgios ; Schmeckpeper, Karl ; Daniilidis, Kostas ; Koditschek, Daniel E</creator><creatorcontrib>Vasilopoulos, Vasileios ; Pavlakos, Georgios ; Schmeckpeper, Karl ; Daniilidis, Kostas ; Koditschek, Daniel E</creatorcontrib><description>This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees convergence to an arbitrarily specified goal, avoiding collisions along the way with fixed but arbitrarily placed instances from the catalogue as well as completely unknown fixed obstacles so long as they are strongly convex and well separated. We illustrate the generic robustness properties of such deterministic reactive planners as well as the relatively modest computational cost of this algorithm by supplementing an extensive numerical study with physical implementation on both a wheeled and legged platform in different settings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Fields (mathematics) ; Navigation ; Object recognition ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Vasilopoulos, Vasileios</creatorcontrib><creatorcontrib>Pavlakos, Georgios</creatorcontrib><creatorcontrib>Schmeckpeper, Karl</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><creatorcontrib>Koditschek, Daniel E</creatorcontrib><title>Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback</title><title>arXiv.org</title><description>This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees convergence to an arbitrarily specified goal, avoiding collisions along the way with fixed but arbitrarily placed instances from the catalogue as well as completely unknown fixed obstacles so long as they are strongly convex and well separated. We illustrate the generic robustness properties of such deterministic reactive planners as well as the relatively modest computational cost of this algorithm by supplementing an extensive numerical study with physical implementation on both a wheeled and legged platform in different settings.</description><subject>Algorithms</subject><subject>Fields (mathematics)</subject><subject>Navigation</subject><subject>Object recognition</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCIp6hwHXhZpYrWuxuJLiz7qOdZSp6VSTtODtdeEBXH2L93pqqI2ZRelc64GaeF_FcawXS50kZqjOe8IycEeww47vGLgRYIEcXWC09g0Z1mwZHeQW5ctGOnaN1CTBw8mz3OFANUrgEnJyJT1DixYyousFy8dY9W9oPU1-jtQ02xzX2-jpmldLPhRV0zr5pkKbZJWadBHPzX_XBxIsRTA</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Vasilopoulos, Vasileios</creator><creator>Pavlakos, Georgios</creator><creator>Schmeckpeper, Karl</creator><creator>Daniilidis, Kostas</creator><creator>Koditschek, Daniel E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210819</creationdate><title>Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback</title><author>Vasilopoulos, Vasileios ; Pavlakos, Georgios ; Schmeckpeper, Karl ; Daniilidis, Kostas ; Koditschek, Daniel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23598386043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Fields (mathematics)</topic><topic>Navigation</topic><topic>Object recognition</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Vasilopoulos, Vasileios</creatorcontrib><creatorcontrib>Pavlakos, Georgios</creatorcontrib><creatorcontrib>Schmeckpeper, Karl</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><creatorcontrib>Koditschek, Daniel E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasilopoulos, Vasileios</au><au>Pavlakos, Georgios</au><au>Schmeckpeper, Karl</au><au>Daniilidis, Kostas</au><au>Koditschek, Daniel E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback</atitle><jtitle>arXiv.org</jtitle><date>2021-08-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees convergence to an arbitrarily specified goal, avoiding collisions along the way with fixed but arbitrarily placed instances from the catalogue as well as completely unknown fixed obstacles so long as they are strongly convex and well separated. We illustrate the generic robustness properties of such deterministic reactive planners as well as the relatively modest computational cost of this algorithm by supplementing an extensive numerical study with physical implementation on both a wheeled and legged platform in different settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2359838604
source Free E- Journals
subjects Algorithms
Fields (mathematics)
Navigation
Object recognition
Robustness (mathematics)
title Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reactive%20Navigation%20in%20Partially%20Familiar%20Planar%20Environments%20Using%20Semantic%20Perceptual%20Feedback&rft.jtitle=arXiv.org&rft.au=Vasilopoulos,%20Vasileios&rft.date=2021-08-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2359838604%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359838604&rft_id=info:pmid/&rfr_iscdi=true