Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback
This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees converg...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Vasilopoulos, Vasileios Pavlakos, Georgios Schmeckpeper, Karl Daniilidis, Kostas Koditschek, Daniel E |
description | This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees convergence to an arbitrarily specified goal, avoiding collisions along the way with fixed but arbitrarily placed instances from the catalogue as well as completely unknown fixed obstacles so long as they are strongly convex and well separated. We illustrate the generic robustness properties of such deterministic reactive planners as well as the relatively modest computational cost of this algorithm by supplementing an extensive numerical study with physical implementation on both a wheeled and legged platform in different settings. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2359838604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359838604</sourcerecordid><originalsourceid>FETCH-proquest_journals_23598386043</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCIp6hwHXhZpYrWuxuJLiz7qOdZSp6VSTtODtdeEBXH2L93pqqI2ZRelc64GaeF_FcawXS50kZqjOe8IycEeww47vGLgRYIEcXWC09g0Z1mwZHeQW5ctGOnaN1CTBw8mz3OFANUrgEnJyJT1DixYyousFy8dY9W9oPU1-jtQ02xzX2-jpmldLPhRV0zr5pkKbZJWadBHPzX_XBxIsRTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359838604</pqid></control><display><type>article</type><title>Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback</title><source>Free E- Journals</source><creator>Vasilopoulos, Vasileios ; Pavlakos, Georgios ; Schmeckpeper, Karl ; Daniilidis, Kostas ; Koditschek, Daniel E</creator><creatorcontrib>Vasilopoulos, Vasileios ; Pavlakos, Georgios ; Schmeckpeper, Karl ; Daniilidis, Kostas ; Koditschek, Daniel E</creatorcontrib><description>This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees convergence to an arbitrarily specified goal, avoiding collisions along the way with fixed but arbitrarily placed instances from the catalogue as well as completely unknown fixed obstacles so long as they are strongly convex and well separated. We illustrate the generic robustness properties of such deterministic reactive planners as well as the relatively modest computational cost of this algorithm by supplementing an extensive numerical study with physical implementation on both a wheeled and legged platform in different settings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Fields (mathematics) ; Navigation ; Object recognition ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Vasilopoulos, Vasileios</creatorcontrib><creatorcontrib>Pavlakos, Georgios</creatorcontrib><creatorcontrib>Schmeckpeper, Karl</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><creatorcontrib>Koditschek, Daniel E</creatorcontrib><title>Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback</title><title>arXiv.org</title><description>This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees convergence to an arbitrarily specified goal, avoiding collisions along the way with fixed but arbitrarily placed instances from the catalogue as well as completely unknown fixed obstacles so long as they are strongly convex and well separated. We illustrate the generic robustness properties of such deterministic reactive planners as well as the relatively modest computational cost of this algorithm by supplementing an extensive numerical study with physical implementation on both a wheeled and legged platform in different settings.</description><subject>Algorithms</subject><subject>Fields (mathematics)</subject><subject>Navigation</subject><subject>Object recognition</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCIp6hwHXhZpYrWuxuJLiz7qOdZSp6VSTtODtdeEBXH2L93pqqI2ZRelc64GaeF_FcawXS50kZqjOe8IycEeww47vGLgRYIEcXWC09g0Z1mwZHeQW5ctGOnaN1CTBw8mz3OFANUrgEnJyJT1DixYyousFy8dY9W9oPU1-jtQ02xzX2-jpmldLPhRV0zr5pkKbZJWadBHPzX_XBxIsRTA</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Vasilopoulos, Vasileios</creator><creator>Pavlakos, Georgios</creator><creator>Schmeckpeper, Karl</creator><creator>Daniilidis, Kostas</creator><creator>Koditschek, Daniel E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210819</creationdate><title>Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback</title><author>Vasilopoulos, Vasileios ; Pavlakos, Georgios ; Schmeckpeper, Karl ; Daniilidis, Kostas ; Koditschek, Daniel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23598386043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Fields (mathematics)</topic><topic>Navigation</topic><topic>Object recognition</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Vasilopoulos, Vasileios</creatorcontrib><creatorcontrib>Pavlakos, Georgios</creatorcontrib><creatorcontrib>Schmeckpeper, Karl</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><creatorcontrib>Koditschek, Daniel E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasilopoulos, Vasileios</au><au>Pavlakos, Georgios</au><au>Schmeckpeper, Karl</au><au>Daniilidis, Kostas</au><au>Koditschek, Daniel E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback</atitle><jtitle>arXiv.org</jtitle><date>2021-08-19</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper solves the planar navigation problem by recourse to an online reactive scheme that exploits recent advances in SLAM and visual object recognition to recast prior geometric knowledge in terms of an offline catalogue of familiar objects. The resulting vector field planner guarantees convergence to an arbitrarily specified goal, avoiding collisions along the way with fixed but arbitrarily placed instances from the catalogue as well as completely unknown fixed obstacles so long as they are strongly convex and well separated. We illustrate the generic robustness properties of such deterministic reactive planners as well as the relatively modest computational cost of this algorithm by supplementing an extensive numerical study with physical implementation on both a wheeled and legged platform in different settings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2359838604 |
source | Free E- Journals |
subjects | Algorithms Fields (mathematics) Navigation Object recognition Robustness (mathematics) |
title | Reactive Navigation in Partially Familiar Planar Environments Using Semantic Perceptual Feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reactive%20Navigation%20in%20Partially%20Familiar%20Planar%20Environments%20Using%20Semantic%20Perceptual%20Feedback&rft.jtitle=arXiv.org&rft.au=Vasilopoulos,%20Vasileios&rft.date=2021-08-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2359838604%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359838604&rft_id=info:pmid/&rfr_iscdi=true |