Schmidt Number Entanglement Measure for Multipartite k-nonseparable States
In this paper, an entanglement measure for multipartite quantum states with respect to k -partition was introduced, which is called Schmidt number entanglement measure for multipartite k -nonseparable states, it is simply denoted by k -ME SN. We show that this measure is well-defined, i.e., it satis...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical physics 2020-03, Vol.59 (3), p.983-990 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 990 |
---|---|
container_issue | 3 |
container_start_page | 983 |
container_title | International journal of theoretical physics |
container_volume | 59 |
creator | Wang, Yinzhu Liu, Tianwen Ma, Ruifen |
description | In this paper, an entanglement measure for multipartite quantum states with respect to
k
-partition was introduced, which is called Schmidt number entanglement measure for multipartite
k
-nonseparable states, it is simply denoted by
k
-ME SN. We show that this measure is well-defined, i.e., it satisfies some basic properties as an entanglement measure. In addition, we give a super bound and lower bound of
k
-ME SN for multipartite pure states according to the definition of joint k-Schmidt number with respect to k-partition. Furthermore, we give some examples to show that Schmidt number entanglement measure can quantify the strength of entanglement for multipartite quantum states. |
doi_str_mv | 10.1007/s10773-020-04386-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2359482001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359482001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6e3b099fbaa0ec7357da7ab890b55afd8ff995e92f4a99f942322dd81eb2f6303</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTaMX3W8RFV5qYVFYW05ybikpEmxnQV_T0qQ2LEajebcO9Ih5JLBNQPQN5GB1oICBwpS5DMqj8iEKc2pUVodkwkcTlrL_JScxbgFAAMyn5Cndfm-q6uUPfe7AkO2aJNrNw3usE3ZCl3sA2a-C9mqb1K9dyHVCbMP2nZtxGF1RYPZOrmE8ZyceNdEvPidU_J2t3idP9Dly_3j_HZJS8FMojMUBRjjC-cASy2Urpx2RW6gUMr5KvfeGIWGe-kGzEguOK-qnGHB_UyAmJKrsXcfus8eY7Lbrg_t8NJyoYzMOQAbKD5SZehiDOjtPtQ7F74sA3twZkdndhBjf5xZOYTEGIoD3G4w_FX_k_oGzEhvrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359482001</pqid></control><display><type>article</type><title>Schmidt Number Entanglement Measure for Multipartite k-nonseparable States</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yinzhu ; Liu, Tianwen ; Ma, Ruifen</creator><creatorcontrib>Wang, Yinzhu ; Liu, Tianwen ; Ma, Ruifen</creatorcontrib><description>In this paper, an entanglement measure for multipartite quantum states with respect to
k
-partition was introduced, which is called Schmidt number entanglement measure for multipartite
k
-nonseparable states, it is simply denoted by
k
-ME SN. We show that this measure is well-defined, i.e., it satisfies some basic properties as an entanglement measure. In addition, we give a super bound and lower bound of
k
-ME SN for multipartite pure states according to the definition of joint k-Schmidt number with respect to k-partition. Furthermore, we give some examples to show that Schmidt number entanglement measure can quantify the strength of entanglement for multipartite quantum states.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-020-04386-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Elementary Particles ; Lower bounds ; Mathematical and Computational Physics ; Partitions ; Physics ; Physics and Astronomy ; Quantum entanglement ; Quantum Field Theory ; Quantum Physics ; Schmidt number ; Theoretical</subject><ispartof>International journal of theoretical physics, 2020-03, Vol.59 (3), p.983-990</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6e3b099fbaa0ec7357da7ab890b55afd8ff995e92f4a99f942322dd81eb2f6303</citedby><cites>FETCH-LOGICAL-c319t-6e3b099fbaa0ec7357da7ab890b55afd8ff995e92f4a99f942322dd81eb2f6303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-020-04386-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-020-04386-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Yinzhu</creatorcontrib><creatorcontrib>Liu, Tianwen</creatorcontrib><creatorcontrib>Ma, Ruifen</creatorcontrib><title>Schmidt Number Entanglement Measure for Multipartite k-nonseparable States</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>In this paper, an entanglement measure for multipartite quantum states with respect to
k
-partition was introduced, which is called Schmidt number entanglement measure for multipartite
k
-nonseparable states, it is simply denoted by
k
-ME SN. We show that this measure is well-defined, i.e., it satisfies some basic properties as an entanglement measure. In addition, we give a super bound and lower bound of
k
-ME SN for multipartite pure states according to the definition of joint k-Schmidt number with respect to k-partition. Furthermore, we give some examples to show that Schmidt number entanglement measure can quantify the strength of entanglement for multipartite quantum states.</description><subject>Elementary Particles</subject><subject>Lower bounds</subject><subject>Mathematical and Computational Physics</subject><subject>Partitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum entanglement</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Schmidt number</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTaMX3W8RFV5qYVFYW05ybikpEmxnQV_T0qQ2LEajebcO9Ih5JLBNQPQN5GB1oICBwpS5DMqj8iEKc2pUVodkwkcTlrL_JScxbgFAAMyn5Cndfm-q6uUPfe7AkO2aJNrNw3usE3ZCl3sA2a-C9mqb1K9dyHVCbMP2nZtxGF1RYPZOrmE8ZyceNdEvPidU_J2t3idP9Dly_3j_HZJS8FMojMUBRjjC-cASy2Urpx2RW6gUMr5KvfeGIWGe-kGzEguOK-qnGHB_UyAmJKrsXcfus8eY7Lbrg_t8NJyoYzMOQAbKD5SZehiDOjtPtQ7F74sA3twZkdndhBjf5xZOYTEGIoD3G4w_FX_k_oGzEhvrA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wang, Yinzhu</creator><creator>Liu, Tianwen</creator><creator>Ma, Ruifen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Schmidt Number Entanglement Measure for Multipartite k-nonseparable States</title><author>Wang, Yinzhu ; Liu, Tianwen ; Ma, Ruifen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6e3b099fbaa0ec7357da7ab890b55afd8ff995e92f4a99f942322dd81eb2f6303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Elementary Particles</topic><topic>Lower bounds</topic><topic>Mathematical and Computational Physics</topic><topic>Partitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum entanglement</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Schmidt number</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yinzhu</creatorcontrib><creatorcontrib>Liu, Tianwen</creatorcontrib><creatorcontrib>Ma, Ruifen</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yinzhu</au><au>Liu, Tianwen</au><au>Ma, Ruifen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schmidt Number Entanglement Measure for Multipartite k-nonseparable States</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>59</volume><issue>3</issue><spage>983</spage><epage>990</epage><pages>983-990</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>In this paper, an entanglement measure for multipartite quantum states with respect to
k
-partition was introduced, which is called Schmidt number entanglement measure for multipartite
k
-nonseparable states, it is simply denoted by
k
-ME SN. We show that this measure is well-defined, i.e., it satisfies some basic properties as an entanglement measure. In addition, we give a super bound and lower bound of
k
-ME SN for multipartite pure states according to the definition of joint k-Schmidt number with respect to k-partition. Furthermore, we give some examples to show that Schmidt number entanglement measure can quantify the strength of entanglement for multipartite quantum states.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-020-04386-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7748 |
ispartof | International journal of theoretical physics, 2020-03, Vol.59 (3), p.983-990 |
issn | 0020-7748 1572-9575 |
language | eng |
recordid | cdi_proquest_journals_2359482001 |
source | SpringerLink Journals - AutoHoldings |
subjects | Elementary Particles Lower bounds Mathematical and Computational Physics Partitions Physics Physics and Astronomy Quantum entanglement Quantum Field Theory Quantum Physics Schmidt number Theoretical |
title | Schmidt Number Entanglement Measure for Multipartite k-nonseparable States |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schmidt%20Number%20Entanglement%20Measure%20for%20Multipartite%20k-nonseparable%20States&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Wang,%20Yinzhu&rft.date=2020-03-01&rft.volume=59&rft.issue=3&rft.spage=983&rft.epage=990&rft.pages=983-990&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-020-04386-4&rft_dat=%3Cproquest_cross%3E2359482001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359482001&rft_id=info:pmid/&rfr_iscdi=true |