Schmidt Number Entanglement Measure for Multipartite k-nonseparable States

In this paper, an entanglement measure for multipartite quantum states with respect to k -partition was introduced, which is called Schmidt number entanglement measure for multipartite k -nonseparable states, it is simply denoted by k -ME SN. We show that this measure is well-defined, i.e., it satis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2020-03, Vol.59 (3), p.983-990
Hauptverfasser: Wang, Yinzhu, Liu, Tianwen, Ma, Ruifen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 990
container_issue 3
container_start_page 983
container_title International journal of theoretical physics
container_volume 59
creator Wang, Yinzhu
Liu, Tianwen
Ma, Ruifen
description In this paper, an entanglement measure for multipartite quantum states with respect to k -partition was introduced, which is called Schmidt number entanglement measure for multipartite k -nonseparable states, it is simply denoted by k -ME SN. We show that this measure is well-defined, i.e., it satisfies some basic properties as an entanglement measure. In addition, we give a super bound and lower bound of k -ME SN for multipartite pure states according to the definition of joint k-Schmidt number with respect to k-partition. Furthermore, we give some examples to show that Schmidt number entanglement measure can quantify the strength of entanglement for multipartite quantum states.
doi_str_mv 10.1007/s10773-020-04386-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2359482001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359482001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6e3b099fbaa0ec7357da7ab890b55afd8ff995e92f4a99f942322dd81eb2f6303</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTaMX3W8RFV5qYVFYW05ybikpEmxnQV_T0qQ2LEajebcO9Ih5JLBNQPQN5GB1oICBwpS5DMqj8iEKc2pUVodkwkcTlrL_JScxbgFAAMyn5Cndfm-q6uUPfe7AkO2aJNrNw3usE3ZCl3sA2a-C9mqb1K9dyHVCbMP2nZtxGF1RYPZOrmE8ZyceNdEvPidU_J2t3idP9Dly_3j_HZJS8FMojMUBRjjC-cASy2Urpx2RW6gUMr5KvfeGIWGe-kGzEguOK-qnGHB_UyAmJKrsXcfus8eY7Lbrg_t8NJyoYzMOQAbKD5SZehiDOjtPtQ7F74sA3twZkdndhBjf5xZOYTEGIoD3G4w_FX_k_oGzEhvrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359482001</pqid></control><display><type>article</type><title>Schmidt Number Entanglement Measure for Multipartite k-nonseparable States</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yinzhu ; Liu, Tianwen ; Ma, Ruifen</creator><creatorcontrib>Wang, Yinzhu ; Liu, Tianwen ; Ma, Ruifen</creatorcontrib><description>In this paper, an entanglement measure for multipartite quantum states with respect to k -partition was introduced, which is called Schmidt number entanglement measure for multipartite k -nonseparable states, it is simply denoted by k -ME SN. We show that this measure is well-defined, i.e., it satisfies some basic properties as an entanglement measure. In addition, we give a super bound and lower bound of k -ME SN for multipartite pure states according to the definition of joint k-Schmidt number with respect to k-partition. Furthermore, we give some examples to show that Schmidt number entanglement measure can quantify the strength of entanglement for multipartite quantum states.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-020-04386-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Elementary Particles ; Lower bounds ; Mathematical and Computational Physics ; Partitions ; Physics ; Physics and Astronomy ; Quantum entanglement ; Quantum Field Theory ; Quantum Physics ; Schmidt number ; Theoretical</subject><ispartof>International journal of theoretical physics, 2020-03, Vol.59 (3), p.983-990</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6e3b099fbaa0ec7357da7ab890b55afd8ff995e92f4a99f942322dd81eb2f6303</citedby><cites>FETCH-LOGICAL-c319t-6e3b099fbaa0ec7357da7ab890b55afd8ff995e92f4a99f942322dd81eb2f6303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-020-04386-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-020-04386-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Yinzhu</creatorcontrib><creatorcontrib>Liu, Tianwen</creatorcontrib><creatorcontrib>Ma, Ruifen</creatorcontrib><title>Schmidt Number Entanglement Measure for Multipartite k-nonseparable States</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>In this paper, an entanglement measure for multipartite quantum states with respect to k -partition was introduced, which is called Schmidt number entanglement measure for multipartite k -nonseparable states, it is simply denoted by k -ME SN. We show that this measure is well-defined, i.e., it satisfies some basic properties as an entanglement measure. In addition, we give a super bound and lower bound of k -ME SN for multipartite pure states according to the definition of joint k-Schmidt number with respect to k-partition. Furthermore, we give some examples to show that Schmidt number entanglement measure can quantify the strength of entanglement for multipartite quantum states.</description><subject>Elementary Particles</subject><subject>Lower bounds</subject><subject>Mathematical and Computational Physics</subject><subject>Partitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum entanglement</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Schmidt number</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTaMX3W8RFV5qYVFYW05ybikpEmxnQV_T0qQ2LEajebcO9Ih5JLBNQPQN5GB1oICBwpS5DMqj8iEKc2pUVodkwkcTlrL_JScxbgFAAMyn5Cndfm-q6uUPfe7AkO2aJNrNw3usE3ZCl3sA2a-C9mqb1K9dyHVCbMP2nZtxGF1RYPZOrmE8ZyceNdEvPidU_J2t3idP9Dly_3j_HZJS8FMojMUBRjjC-cASy2Urpx2RW6gUMr5KvfeGIWGe-kGzEguOK-qnGHB_UyAmJKrsXcfus8eY7Lbrg_t8NJyoYzMOQAbKD5SZehiDOjtPtQ7F74sA3twZkdndhBjf5xZOYTEGIoD3G4w_FX_k_oGzEhvrA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wang, Yinzhu</creator><creator>Liu, Tianwen</creator><creator>Ma, Ruifen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>Schmidt Number Entanglement Measure for Multipartite k-nonseparable States</title><author>Wang, Yinzhu ; Liu, Tianwen ; Ma, Ruifen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6e3b099fbaa0ec7357da7ab890b55afd8ff995e92f4a99f942322dd81eb2f6303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Elementary Particles</topic><topic>Lower bounds</topic><topic>Mathematical and Computational Physics</topic><topic>Partitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum entanglement</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Schmidt number</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yinzhu</creatorcontrib><creatorcontrib>Liu, Tianwen</creatorcontrib><creatorcontrib>Ma, Ruifen</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yinzhu</au><au>Liu, Tianwen</au><au>Ma, Ruifen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Schmidt Number Entanglement Measure for Multipartite k-nonseparable States</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>59</volume><issue>3</issue><spage>983</spage><epage>990</epage><pages>983-990</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>In this paper, an entanglement measure for multipartite quantum states with respect to k -partition was introduced, which is called Schmidt number entanglement measure for multipartite k -nonseparable states, it is simply denoted by k -ME SN. We show that this measure is well-defined, i.e., it satisfies some basic properties as an entanglement measure. In addition, we give a super bound and lower bound of k -ME SN for multipartite pure states according to the definition of joint k-Schmidt number with respect to k-partition. Furthermore, we give some examples to show that Schmidt number entanglement measure can quantify the strength of entanglement for multipartite quantum states.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-020-04386-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2020-03, Vol.59 (3), p.983-990
issn 0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_2359482001
source SpringerLink Journals - AutoHoldings
subjects Elementary Particles
Lower bounds
Mathematical and Computational Physics
Partitions
Physics
Physics and Astronomy
Quantum entanglement
Quantum Field Theory
Quantum Physics
Schmidt number
Theoretical
title Schmidt Number Entanglement Measure for Multipartite k-nonseparable States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Schmidt%20Number%20Entanglement%20Measure%20for%20Multipartite%20k-nonseparable%20States&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Wang,%20Yinzhu&rft.date=2020-03-01&rft.volume=59&rft.issue=3&rft.spage=983&rft.epage=990&rft.pages=983-990&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-020-04386-4&rft_dat=%3Cproquest_cross%3E2359482001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359482001&rft_id=info:pmid/&rfr_iscdi=true