Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation
To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nano...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2020-02, Vol.7 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 7 |
creator | Crisp, Ryan W. Hashemi, Fatemeh S. M. Alkemade, Jordi Kirkwood, Nicholas Grimaldi, Gianluca Kinge, Sachin Siebbeles, Laurens D. A. Ommen, J. Ruud Houtepen, Arjan J. |
description | To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nanometer scale and results in conformal coatings with mild processing conditions. Different thicknesses of crystalline ZnO films deposited on InP QD films are studied with spectrophotometry and time‐resolved microwave conductivity measurements. High carrier mobilities of 4 cm2 (V s)−1 and charge separation between the QDs and ZnO are observed. Furthermore, the results confirm that the stability of QD thin films is strongly improved when the inorganic ALD coating is applied. Finally, proof‐of‐concept photovoltaic devices of InP QD films are demonstrated with an ALD‐grown ZnO electron extraction layer.
The technique of atomic layer deposition (ALD) provides an ideal method for fabricating designer materials. The authors develop a facile ambient pressure variant of ALD to coat and in‐fill films of quantum dots. This intimate contact between an electron accepting material affords enhanced charge transport, molecular‐scale encapsulation, and rectifying junction formation for solar cells. |
doi_str_mv | 10.1002/admi.201901600 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2359414129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359414129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-83df9d7980780d3ab5d2b6c10510e1e165052dc79aeca5ed27a546b1969ee0503</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EElXpymyJlZSzUyfxWLUUKgUVVFhYLCd2wFUSBzsBlV9PSitgY7p3uvfd6R5C5wTGBIBeSVWZMQXCgUQAR2hACY-COGRw_EefopH3GwAghBKahAP0Pm1tZXKcyq12eK4b601rbI1tgZ_rFe7Vsr7HD52s267Cc9vihSkrjwvr8OxVuheN17qRTu6oS7xuZWZK83loZa3w2pay9-qyxAvrqu_JGTopZOn16FCH6Glx_Ti7DdLVzXI2TYM8ZDEESagKrmKeQJyACmXGFM2inAAjoIkmEQNGVR5zqXPJtKKxZJMo69_lWgODcIgu9nsbZ9867VuxsZ2r-5OChoxPyIRQ3rvGe1furPdOF6JxppJuKwiIXbxiF6_4ibcH-B74MKXe_uMW0_nd8pf9Ai7SfWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359414129</pqid></control><display><type>article</type><title>Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Crisp, Ryan W. ; Hashemi, Fatemeh S. M. ; Alkemade, Jordi ; Kirkwood, Nicholas ; Grimaldi, Gianluca ; Kinge, Sachin ; Siebbeles, Laurens D. A. ; Ommen, J. Ruud ; Houtepen, Arjan J.</creator><creatorcontrib>Crisp, Ryan W. ; Hashemi, Fatemeh S. M. ; Alkemade, Jordi ; Kirkwood, Nicholas ; Grimaldi, Gianluca ; Kinge, Sachin ; Siebbeles, Laurens D. A. ; Ommen, J. Ruud ; Houtepen, Arjan J.</creatorcontrib><description>To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nanometer scale and results in conformal coatings with mild processing conditions. Different thicknesses of crystalline ZnO films deposited on InP QD films are studied with spectrophotometry and time‐resolved microwave conductivity measurements. High carrier mobilities of 4 cm2 (V s)−1 and charge separation between the QDs and ZnO are observed. Furthermore, the results confirm that the stability of QD thin films is strongly improved when the inorganic ALD coating is applied. Finally, proof‐of‐concept photovoltaic devices of InP QD films are demonstrated with an ALD‐grown ZnO electron extraction layer.
The technique of atomic layer deposition (ALD) provides an ideal method for fabricating designer materials. The authors develop a facile ambient pressure variant of ALD to coat and in‐fill films of quantum dots. This intimate contact between an electron accepting material affords enhanced charge transport, molecular‐scale encapsulation, and rectifying junction formation for solar cells.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201901600</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Atomic layer epitaxy ; Carrier mobility ; charge transport ; Film growth ; LEDs ; Optoelectronic devices ; Photovoltaic cells ; p–n junctions ; Quantum dots ; Separation ; Solar cells ; Spectrophotometry ; Stability ; Thickness ; Thin films ; time‐resolved microwave conductivity ; Zinc oxide</subject><ispartof>Advanced materials interfaces, 2020-02, Vol.7 (4), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-83df9d7980780d3ab5d2b6c10510e1e165052dc79aeca5ed27a546b1969ee0503</citedby><cites>FETCH-LOGICAL-c3570-83df9d7980780d3ab5d2b6c10510e1e165052dc79aeca5ed27a546b1969ee0503</cites><orcidid>0000-0002-3703-9617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201901600$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201901600$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Crisp, Ryan W.</creatorcontrib><creatorcontrib>Hashemi, Fatemeh S. M.</creatorcontrib><creatorcontrib>Alkemade, Jordi</creatorcontrib><creatorcontrib>Kirkwood, Nicholas</creatorcontrib><creatorcontrib>Grimaldi, Gianluca</creatorcontrib><creatorcontrib>Kinge, Sachin</creatorcontrib><creatorcontrib>Siebbeles, Laurens D. A.</creatorcontrib><creatorcontrib>Ommen, J. Ruud</creatorcontrib><creatorcontrib>Houtepen, Arjan J.</creatorcontrib><title>Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation</title><title>Advanced materials interfaces</title><description>To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nanometer scale and results in conformal coatings with mild processing conditions. Different thicknesses of crystalline ZnO films deposited on InP QD films are studied with spectrophotometry and time‐resolved microwave conductivity measurements. High carrier mobilities of 4 cm2 (V s)−1 and charge separation between the QDs and ZnO are observed. Furthermore, the results confirm that the stability of QD thin films is strongly improved when the inorganic ALD coating is applied. Finally, proof‐of‐concept photovoltaic devices of InP QD films are demonstrated with an ALD‐grown ZnO electron extraction layer.
The technique of atomic layer deposition (ALD) provides an ideal method for fabricating designer materials. The authors develop a facile ambient pressure variant of ALD to coat and in‐fill films of quantum dots. This intimate contact between an electron accepting material affords enhanced charge transport, molecular‐scale encapsulation, and rectifying junction formation for solar cells.</description><subject>Atomic layer epitaxy</subject><subject>Carrier mobility</subject><subject>charge transport</subject><subject>Film growth</subject><subject>LEDs</subject><subject>Optoelectronic devices</subject><subject>Photovoltaic cells</subject><subject>p–n junctions</subject><subject>Quantum dots</subject><subject>Separation</subject><subject>Solar cells</subject><subject>Spectrophotometry</subject><subject>Stability</subject><subject>Thickness</subject><subject>Thin films</subject><subject>time‐resolved microwave conductivity</subject><subject>Zinc oxide</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkDFPwzAQhS0EElXpymyJlZSzUyfxWLUUKgUVVFhYLCd2wFUSBzsBlV9PSitgY7p3uvfd6R5C5wTGBIBeSVWZMQXCgUQAR2hACY-COGRw_EefopH3GwAghBKahAP0Pm1tZXKcyq12eK4b601rbI1tgZ_rFe7Vsr7HD52s267Cc9vihSkrjwvr8OxVuheN17qRTu6oS7xuZWZK83loZa3w2pay9-qyxAvrqu_JGTopZOn16FCH6Glx_Ti7DdLVzXI2TYM8ZDEESagKrmKeQJyACmXGFM2inAAjoIkmEQNGVR5zqXPJtKKxZJMo69_lWgODcIgu9nsbZ9867VuxsZ2r-5OChoxPyIRQ3rvGe1furPdOF6JxppJuKwiIXbxiF6_4ibcH-B74MKXe_uMW0_nd8pf9Ai7SfWw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Crisp, Ryan W.</creator><creator>Hashemi, Fatemeh S. M.</creator><creator>Alkemade, Jordi</creator><creator>Kirkwood, Nicholas</creator><creator>Grimaldi, Gianluca</creator><creator>Kinge, Sachin</creator><creator>Siebbeles, Laurens D. A.</creator><creator>Ommen, J. Ruud</creator><creator>Houtepen, Arjan J.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3703-9617</orcidid></search><sort><creationdate>20200201</creationdate><title>Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation</title><author>Crisp, Ryan W. ; Hashemi, Fatemeh S. M. ; Alkemade, Jordi ; Kirkwood, Nicholas ; Grimaldi, Gianluca ; Kinge, Sachin ; Siebbeles, Laurens D. A. ; Ommen, J. Ruud ; Houtepen, Arjan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-83df9d7980780d3ab5d2b6c10510e1e165052dc79aeca5ed27a546b1969ee0503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic layer epitaxy</topic><topic>Carrier mobility</topic><topic>charge transport</topic><topic>Film growth</topic><topic>LEDs</topic><topic>Optoelectronic devices</topic><topic>Photovoltaic cells</topic><topic>p–n junctions</topic><topic>Quantum dots</topic><topic>Separation</topic><topic>Solar cells</topic><topic>Spectrophotometry</topic><topic>Stability</topic><topic>Thickness</topic><topic>Thin films</topic><topic>time‐resolved microwave conductivity</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crisp, Ryan W.</creatorcontrib><creatorcontrib>Hashemi, Fatemeh S. M.</creatorcontrib><creatorcontrib>Alkemade, Jordi</creatorcontrib><creatorcontrib>Kirkwood, Nicholas</creatorcontrib><creatorcontrib>Grimaldi, Gianluca</creatorcontrib><creatorcontrib>Kinge, Sachin</creatorcontrib><creatorcontrib>Siebbeles, Laurens D. A.</creatorcontrib><creatorcontrib>Ommen, J. Ruud</creatorcontrib><creatorcontrib>Houtepen, Arjan J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crisp, Ryan W.</au><au>Hashemi, Fatemeh S. M.</au><au>Alkemade, Jordi</au><au>Kirkwood, Nicholas</au><au>Grimaldi, Gianluca</au><au>Kinge, Sachin</au><au>Siebbeles, Laurens D. A.</au><au>Ommen, J. Ruud</au><au>Houtepen, Arjan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation</atitle><jtitle>Advanced materials interfaces</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nanometer scale and results in conformal coatings with mild processing conditions. Different thicknesses of crystalline ZnO films deposited on InP QD films are studied with spectrophotometry and time‐resolved microwave conductivity measurements. High carrier mobilities of 4 cm2 (V s)−1 and charge separation between the QDs and ZnO are observed. Furthermore, the results confirm that the stability of QD thin films is strongly improved when the inorganic ALD coating is applied. Finally, proof‐of‐concept photovoltaic devices of InP QD films are demonstrated with an ALD‐grown ZnO electron extraction layer.
The technique of atomic layer deposition (ALD) provides an ideal method for fabricating designer materials. The authors develop a facile ambient pressure variant of ALD to coat and in‐fill films of quantum dots. This intimate contact between an electron accepting material affords enhanced charge transport, molecular‐scale encapsulation, and rectifying junction formation for solar cells.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/admi.201901600</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3703-9617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2020-02, Vol.7 (4), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_proquest_journals_2359414129 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atomic layer epitaxy Carrier mobility charge transport Film growth LEDs Optoelectronic devices Photovoltaic cells p–n junctions Quantum dots Separation Solar cells Spectrophotometry Stability Thickness Thin films time‐resolved microwave conductivity Zinc oxide |
title | Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Layer%20Deposition%20of%20ZnO%20on%20InP%20Quantum%20Dot%20Films%20for%20Charge%20Separation,%20Stabilization,%20and%20Solar%20Cell%20Formation&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Crisp,%20Ryan%20W.&rft.date=2020-02-01&rft.volume=7&rft.issue=4&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201901600&rft_dat=%3Cproquest_cross%3E2359414129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359414129&rft_id=info:pmid/&rfr_iscdi=true |