Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation

To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2020-02, Vol.7 (4), p.n/a
Hauptverfasser: Crisp, Ryan W., Hashemi, Fatemeh S. M., Alkemade, Jordi, Kirkwood, Nicholas, Grimaldi, Gianluca, Kinge, Sachin, Siebbeles, Laurens D. A., Ommen, J. Ruud, Houtepen, Arjan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced materials interfaces
container_volume 7
creator Crisp, Ryan W.
Hashemi, Fatemeh S. M.
Alkemade, Jordi
Kirkwood, Nicholas
Grimaldi, Gianluca
Kinge, Sachin
Siebbeles, Laurens D. A.
Ommen, J. Ruud
Houtepen, Arjan J.
description To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nanometer scale and results in conformal coatings with mild processing conditions. Different thicknesses of crystalline ZnO films deposited on InP QD films are studied with spectrophotometry and time‐resolved microwave conductivity measurements. High carrier mobilities of 4 cm2 (V s)−1 and charge separation between the QDs and ZnO are observed. Furthermore, the results confirm that the stability of QD thin films is strongly improved when the inorganic ALD coating is applied. Finally, proof‐of‐concept photovoltaic devices of InP QD films are demonstrated with an ALD‐grown ZnO electron extraction layer. The technique of atomic layer deposition (ALD) provides an ideal method for fabricating designer materials. The authors develop a facile ambient pressure variant of ALD to coat and in‐fill films of quantum dots. This intimate contact between an electron accepting material affords enhanced charge transport, molecular‐scale encapsulation, and rectifying junction formation for solar cells.
doi_str_mv 10.1002/admi.201901600
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2359414129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359414129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-83df9d7980780d3ab5d2b6c10510e1e165052dc79aeca5ed27a546b1969ee0503</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EElXpymyJlZSzUyfxWLUUKgUVVFhYLCd2wFUSBzsBlV9PSitgY7p3uvfd6R5C5wTGBIBeSVWZMQXCgUQAR2hACY-COGRw_EefopH3GwAghBKahAP0Pm1tZXKcyq12eK4b601rbI1tgZ_rFe7Vsr7HD52s267Cc9vihSkrjwvr8OxVuheN17qRTu6oS7xuZWZK83loZa3w2pay9-qyxAvrqu_JGTopZOn16FCH6Glx_Ti7DdLVzXI2TYM8ZDEESagKrmKeQJyACmXGFM2inAAjoIkmEQNGVR5zqXPJtKKxZJMo69_lWgODcIgu9nsbZ9867VuxsZ2r-5OChoxPyIRQ3rvGe1furPdOF6JxppJuKwiIXbxiF6_4ibcH-B74MKXe_uMW0_nd8pf9Ai7SfWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359414129</pqid></control><display><type>article</type><title>Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Crisp, Ryan W. ; Hashemi, Fatemeh S. M. ; Alkemade, Jordi ; Kirkwood, Nicholas ; Grimaldi, Gianluca ; Kinge, Sachin ; Siebbeles, Laurens D. A. ; Ommen, J. Ruud ; Houtepen, Arjan J.</creator><creatorcontrib>Crisp, Ryan W. ; Hashemi, Fatemeh S. M. ; Alkemade, Jordi ; Kirkwood, Nicholas ; Grimaldi, Gianluca ; Kinge, Sachin ; Siebbeles, Laurens D. A. ; Ommen, J. Ruud ; Houtepen, Arjan J.</creatorcontrib><description>To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nanometer scale and results in conformal coatings with mild processing conditions. Different thicknesses of crystalline ZnO films deposited on InP QD films are studied with spectrophotometry and time‐resolved microwave conductivity measurements. High carrier mobilities of 4 cm2 (V s)−1 and charge separation between the QDs and ZnO are observed. Furthermore, the results confirm that the stability of QD thin films is strongly improved when the inorganic ALD coating is applied. Finally, proof‐of‐concept photovoltaic devices of InP QD films are demonstrated with an ALD‐grown ZnO electron extraction layer. The technique of atomic layer deposition (ALD) provides an ideal method for fabricating designer materials. The authors develop a facile ambient pressure variant of ALD to coat and in‐fill films of quantum dots. This intimate contact between an electron accepting material affords enhanced charge transport, molecular‐scale encapsulation, and rectifying junction formation for solar cells.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201901600</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Atomic layer epitaxy ; Carrier mobility ; charge transport ; Film growth ; LEDs ; Optoelectronic devices ; Photovoltaic cells ; p–n junctions ; Quantum dots ; Separation ; Solar cells ; Spectrophotometry ; Stability ; Thickness ; Thin films ; time‐resolved microwave conductivity ; Zinc oxide</subject><ispartof>Advanced materials interfaces, 2020-02, Vol.7 (4), p.n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-83df9d7980780d3ab5d2b6c10510e1e165052dc79aeca5ed27a546b1969ee0503</citedby><cites>FETCH-LOGICAL-c3570-83df9d7980780d3ab5d2b6c10510e1e165052dc79aeca5ed27a546b1969ee0503</cites><orcidid>0000-0002-3703-9617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201901600$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201901600$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Crisp, Ryan W.</creatorcontrib><creatorcontrib>Hashemi, Fatemeh S. M.</creatorcontrib><creatorcontrib>Alkemade, Jordi</creatorcontrib><creatorcontrib>Kirkwood, Nicholas</creatorcontrib><creatorcontrib>Grimaldi, Gianluca</creatorcontrib><creatorcontrib>Kinge, Sachin</creatorcontrib><creatorcontrib>Siebbeles, Laurens D. A.</creatorcontrib><creatorcontrib>Ommen, J. Ruud</creatorcontrib><creatorcontrib>Houtepen, Arjan J.</creatorcontrib><title>Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation</title><title>Advanced materials interfaces</title><description>To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nanometer scale and results in conformal coatings with mild processing conditions. Different thicknesses of crystalline ZnO films deposited on InP QD films are studied with spectrophotometry and time‐resolved microwave conductivity measurements. High carrier mobilities of 4 cm2 (V s)−1 and charge separation between the QDs and ZnO are observed. Furthermore, the results confirm that the stability of QD thin films is strongly improved when the inorganic ALD coating is applied. Finally, proof‐of‐concept photovoltaic devices of InP QD films are demonstrated with an ALD‐grown ZnO electron extraction layer. The technique of atomic layer deposition (ALD) provides an ideal method for fabricating designer materials. The authors develop a facile ambient pressure variant of ALD to coat and in‐fill films of quantum dots. This intimate contact between an electron accepting material affords enhanced charge transport, molecular‐scale encapsulation, and rectifying junction formation for solar cells.</description><subject>Atomic layer epitaxy</subject><subject>Carrier mobility</subject><subject>charge transport</subject><subject>Film growth</subject><subject>LEDs</subject><subject>Optoelectronic devices</subject><subject>Photovoltaic cells</subject><subject>p–n junctions</subject><subject>Quantum dots</subject><subject>Separation</subject><subject>Solar cells</subject><subject>Spectrophotometry</subject><subject>Stability</subject><subject>Thickness</subject><subject>Thin films</subject><subject>time‐resolved microwave conductivity</subject><subject>Zinc oxide</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkDFPwzAQhS0EElXpymyJlZSzUyfxWLUUKgUVVFhYLCd2wFUSBzsBlV9PSitgY7p3uvfd6R5C5wTGBIBeSVWZMQXCgUQAR2hACY-COGRw_EefopH3GwAghBKahAP0Pm1tZXKcyq12eK4b601rbI1tgZ_rFe7Vsr7HD52s267Cc9vihSkrjwvr8OxVuheN17qRTu6oS7xuZWZK83loZa3w2pay9-qyxAvrqu_JGTopZOn16FCH6Glx_Ti7DdLVzXI2TYM8ZDEESagKrmKeQJyACmXGFM2inAAjoIkmEQNGVR5zqXPJtKKxZJMo69_lWgODcIgu9nsbZ9867VuxsZ2r-5OChoxPyIRQ3rvGe1furPdOF6JxppJuKwiIXbxiF6_4ibcH-B74MKXe_uMW0_nd8pf9Ai7SfWw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Crisp, Ryan W.</creator><creator>Hashemi, Fatemeh S. M.</creator><creator>Alkemade, Jordi</creator><creator>Kirkwood, Nicholas</creator><creator>Grimaldi, Gianluca</creator><creator>Kinge, Sachin</creator><creator>Siebbeles, Laurens D. A.</creator><creator>Ommen, J. Ruud</creator><creator>Houtepen, Arjan J.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3703-9617</orcidid></search><sort><creationdate>20200201</creationdate><title>Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation</title><author>Crisp, Ryan W. ; Hashemi, Fatemeh S. M. ; Alkemade, Jordi ; Kirkwood, Nicholas ; Grimaldi, Gianluca ; Kinge, Sachin ; Siebbeles, Laurens D. A. ; Ommen, J. Ruud ; Houtepen, Arjan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-83df9d7980780d3ab5d2b6c10510e1e165052dc79aeca5ed27a546b1969ee0503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic layer epitaxy</topic><topic>Carrier mobility</topic><topic>charge transport</topic><topic>Film growth</topic><topic>LEDs</topic><topic>Optoelectronic devices</topic><topic>Photovoltaic cells</topic><topic>p–n junctions</topic><topic>Quantum dots</topic><topic>Separation</topic><topic>Solar cells</topic><topic>Spectrophotometry</topic><topic>Stability</topic><topic>Thickness</topic><topic>Thin films</topic><topic>time‐resolved microwave conductivity</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crisp, Ryan W.</creatorcontrib><creatorcontrib>Hashemi, Fatemeh S. M.</creatorcontrib><creatorcontrib>Alkemade, Jordi</creatorcontrib><creatorcontrib>Kirkwood, Nicholas</creatorcontrib><creatorcontrib>Grimaldi, Gianluca</creatorcontrib><creatorcontrib>Kinge, Sachin</creatorcontrib><creatorcontrib>Siebbeles, Laurens D. A.</creatorcontrib><creatorcontrib>Ommen, J. Ruud</creatorcontrib><creatorcontrib>Houtepen, Arjan J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crisp, Ryan W.</au><au>Hashemi, Fatemeh S. M.</au><au>Alkemade, Jordi</au><au>Kirkwood, Nicholas</au><au>Grimaldi, Gianluca</au><au>Kinge, Sachin</au><au>Siebbeles, Laurens D. A.</au><au>Ommen, J. Ruud</au><au>Houtepen, Arjan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation</atitle><jtitle>Advanced materials interfaces</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>To improve the stability and carrier mobility of quantum dot (QD) optoelectronic devices, encapsulation or pore infilling processes are advantageous. Atomic layer deposition (ALD) is an ideal technique to infill and overcoat QD films, as it provides excellent control over film growth at the sub‐nanometer scale and results in conformal coatings with mild processing conditions. Different thicknesses of crystalline ZnO films deposited on InP QD films are studied with spectrophotometry and time‐resolved microwave conductivity measurements. High carrier mobilities of 4 cm2 (V s)−1 and charge separation between the QDs and ZnO are observed. Furthermore, the results confirm that the stability of QD thin films is strongly improved when the inorganic ALD coating is applied. Finally, proof‐of‐concept photovoltaic devices of InP QD films are demonstrated with an ALD‐grown ZnO electron extraction layer. The technique of atomic layer deposition (ALD) provides an ideal method for fabricating designer materials. The authors develop a facile ambient pressure variant of ALD to coat and in‐fill films of quantum dots. This intimate contact between an electron accepting material affords enhanced charge transport, molecular‐scale encapsulation, and rectifying junction formation for solar cells.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.201901600</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3703-9617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2020-02, Vol.7 (4), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2359414129
source Wiley Online Library Journals Frontfile Complete
subjects Atomic layer epitaxy
Carrier mobility
charge transport
Film growth
LEDs
Optoelectronic devices
Photovoltaic cells
p–n junctions
Quantum dots
Separation
Solar cells
Spectrophotometry
Stability
Thickness
Thin films
time‐resolved microwave conductivity
Zinc oxide
title Atomic Layer Deposition of ZnO on InP Quantum Dot Films for Charge Separation, Stabilization, and Solar Cell Formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Layer%20Deposition%20of%20ZnO%20on%20InP%20Quantum%20Dot%20Films%20for%20Charge%20Separation,%20Stabilization,%20and%20Solar%20Cell%20Formation&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Crisp,%20Ryan%20W.&rft.date=2020-02-01&rft.volume=7&rft.issue=4&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201901600&rft_dat=%3Cproquest_cross%3E2359414129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359414129&rft_id=info:pmid/&rfr_iscdi=true