STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT
The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the p...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2020-02, Vol.48 (1), p.251-273 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | 1 |
container_start_page | 251 |
container_title | The Annals of statistics |
container_volume | 48 |
creator | Chen, Xi Lee, Jason D. Tong, Xin T. Zhang, Yichen |
description | The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions.
Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests.
Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data. |
doi_str_mv | 10.1214/18-AOS1801 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2359342360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26923100</jstor_id><sourcerecordid>26923100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-96bc8ace223d8e8b7d39615e8c402619dba158b00fa2518856da1a0889318eaf3</originalsourceid><addsrcrecordid>eNo90EFLw0AQBeBFFKzVi3dhwZsQndlN1tljSLdtoG0kieewSTZgUVOz7cF_b0qLl3mH-XgDw9g9wjMKDF-QgjgrkAAv2ESgooC0UpdsAqAhiKQKr9mN91sAiHQoJywtyrgcR5rEK55u5iY3m8TweZbzdTYzK_4W5_HalCYvxjUvyixZxkfOF3k8S82m5DNTJGPesqvOfnp3d84pe5-bMlkGq2xxbA8aQbgPtKobso0TQrbkqH5tpVYYOWpCEAp1W1uMqAborIiQKFKtRQtEWiI528kpezz17ob-5-D8vtr2h-F7PFkJGWkZCqlgVE8n1Qy994Prqt3w8WWH3wqhOr6qQqrOrxrxwwlv_b4f_qVQWkgEkH9Zt1zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359342360</pqid></control><display><type>article</type><title>STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT</title><source>JSTOR Mathematics & Statistics</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR</source><creator>Chen, Xi ; Lee, Jason D. ; Tong, Xin T. ; Zhang, Yichen</creator><creatorcontrib>Chen, Xi ; Lee, Jason D. ; Tong, Xin T. ; Zhang, Yichen</creatorcontrib><description>The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions.
Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests.
Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/18-AOS1801</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Algorithms ; Asymptotic methods ; Asymptotic properties ; Computational efficiency ; Confidence intervals ; Covariance ; Error analysis ; Estimating techniques ; Estimators ; Mathematical models ; Parameters ; Regression analysis ; Regression coefficients ; Smoothness ; Statistical analysis ; Statistical inference ; Stochastic models</subject><ispartof>The Annals of statistics, 2020-02, Vol.48 (1), p.251-273</ispartof><rights>Institute of Mathematical Statistics, 2020</rights><rights>Copyright Institute of Mathematical Statistics Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-96bc8ace223d8e8b7d39615e8c402619dba158b00fa2518856da1a0889318eaf3</citedby><cites>FETCH-LOGICAL-c281t-96bc8ace223d8e8b7d39615e8c402619dba158b00fa2518856da1a0889318eaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26923100$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26923100$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Lee, Jason D.</creatorcontrib><creatorcontrib>Tong, Xin T.</creatorcontrib><creatorcontrib>Zhang, Yichen</creatorcontrib><title>STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT</title><title>The Annals of statistics</title><description>The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions.
Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests.
Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data.</description><subject>Algorithms</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computational efficiency</subject><subject>Confidence intervals</subject><subject>Covariance</subject><subject>Error analysis</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Smoothness</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Stochastic models</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo90EFLw0AQBeBFFKzVi3dhwZsQndlN1tljSLdtoG0kieewSTZgUVOz7cF_b0qLl3mH-XgDw9g9wjMKDF-QgjgrkAAv2ESgooC0UpdsAqAhiKQKr9mN91sAiHQoJywtyrgcR5rEK55u5iY3m8TweZbzdTYzK_4W5_HalCYvxjUvyixZxkfOF3k8S82m5DNTJGPesqvOfnp3d84pe5-bMlkGq2xxbA8aQbgPtKobso0TQrbkqH5tpVYYOWpCEAp1W1uMqAborIiQKFKtRQtEWiI528kpezz17ob-5-D8vtr2h-F7PFkJGWkZCqlgVE8n1Qy994Prqt3w8WWH3wqhOr6qQqrOrxrxwwlv_b4f_qVQWkgEkH9Zt1zg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Chen, Xi</creator><creator>Lee, Jason D.</creator><creator>Tong, Xin T.</creator><creator>Zhang, Yichen</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20200201</creationdate><title>STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT</title><author>Chen, Xi ; Lee, Jason D. ; Tong, Xin T. ; Zhang, Yichen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-96bc8ace223d8e8b7d39615e8c402619dba158b00fa2518856da1a0889318eaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computational efficiency</topic><topic>Confidence intervals</topic><topic>Covariance</topic><topic>Error analysis</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Smoothness</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Lee, Jason D.</creatorcontrib><creatorcontrib>Tong, Xin T.</creatorcontrib><creatorcontrib>Zhang, Yichen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xi</au><au>Lee, Jason D.</au><au>Tong, Xin T.</au><au>Zhang, Yichen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT</atitle><jtitle>The Annals of statistics</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>48</volume><issue>1</issue><spage>251</spage><epage>273</epage><pages>251-273</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions.
Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests.
Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/18-AOS1801</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2020-02, Vol.48 (1), p.251-273 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_proquest_journals_2359342360 |
source | JSTOR Mathematics & Statistics; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR |
subjects | Algorithms Asymptotic methods Asymptotic properties Computational efficiency Confidence intervals Covariance Error analysis Estimating techniques Estimators Mathematical models Parameters Regression analysis Regression coefficients Smoothness Statistical analysis Statistical inference Stochastic models |
title | STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STATISTICAL%20INFERENCE%20FOR%20MODEL%20PARAMETERS%20IN%20STOCHASTIC%20GRADIENT%20DESCENT&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Chen,%20Xi&rft.date=2020-02-01&rft.volume=48&rft.issue=1&rft.spage=251&rft.epage=273&rft.pages=251-273&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/18-AOS1801&rft_dat=%3Cjstor_proqu%3E26923100%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359342360&rft_id=info:pmid/&rft_jstor_id=26923100&rfr_iscdi=true |