STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT

The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2020-02, Vol.48 (1), p.251-273
Hauptverfasser: Chen, Xi, Lee, Jason D., Tong, Xin T., Zhang, Yichen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue 1
container_start_page 251
container_title The Annals of statistics
container_volume 48
creator Chen, Xi
Lee, Jason D.
Tong, Xin T.
Zhang, Yichen
description The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions. Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests. Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data.
doi_str_mv 10.1214/18-AOS1801
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2359342360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26923100</jstor_id><sourcerecordid>26923100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-96bc8ace223d8e8b7d39615e8c402619dba158b00fa2518856da1a0889318eaf3</originalsourceid><addsrcrecordid>eNo90EFLw0AQBeBFFKzVi3dhwZsQndlN1tljSLdtoG0kieewSTZgUVOz7cF_b0qLl3mH-XgDw9g9wjMKDF-QgjgrkAAv2ESgooC0UpdsAqAhiKQKr9mN91sAiHQoJywtyrgcR5rEK55u5iY3m8TweZbzdTYzK_4W5_HalCYvxjUvyixZxkfOF3k8S82m5DNTJGPesqvOfnp3d84pe5-bMlkGq2xxbA8aQbgPtKobso0TQrbkqH5tpVYYOWpCEAp1W1uMqAborIiQKFKtRQtEWiI528kpezz17ob-5-D8vtr2h-F7PFkJGWkZCqlgVE8n1Qy994Prqt3w8WWH3wqhOr6qQqrOrxrxwwlv_b4f_qVQWkgEkH9Zt1zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359342360</pqid></control><display><type>article</type><title>STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT</title><source>JSTOR Mathematics &amp; Statistics</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><source>JSTOR</source><creator>Chen, Xi ; Lee, Jason D. ; Tong, Xin T. ; Zhang, Yichen</creator><creatorcontrib>Chen, Xi ; Lee, Jason D. ; Tong, Xin T. ; Zhang, Yichen</creatorcontrib><description>The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions. Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests. Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/18-AOS1801</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Algorithms ; Asymptotic methods ; Asymptotic properties ; Computational efficiency ; Confidence intervals ; Covariance ; Error analysis ; Estimating techniques ; Estimators ; Mathematical models ; Parameters ; Regression analysis ; Regression coefficients ; Smoothness ; Statistical analysis ; Statistical inference ; Stochastic models</subject><ispartof>The Annals of statistics, 2020-02, Vol.48 (1), p.251-273</ispartof><rights>Institute of Mathematical Statistics, 2020</rights><rights>Copyright Institute of Mathematical Statistics Feb 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-96bc8ace223d8e8b7d39615e8c402619dba158b00fa2518856da1a0889318eaf3</citedby><cites>FETCH-LOGICAL-c281t-96bc8ace223d8e8b7d39615e8c402619dba158b00fa2518856da1a0889318eaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26923100$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26923100$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Lee, Jason D.</creatorcontrib><creatorcontrib>Tong, Xin T.</creatorcontrib><creatorcontrib>Zhang, Yichen</creatorcontrib><title>STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT</title><title>The Annals of statistics</title><description>The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions. Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests. Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data.</description><subject>Algorithms</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computational efficiency</subject><subject>Confidence intervals</subject><subject>Covariance</subject><subject>Error analysis</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>Smoothness</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Stochastic models</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo90EFLw0AQBeBFFKzVi3dhwZsQndlN1tljSLdtoG0kieewSTZgUVOz7cF_b0qLl3mH-XgDw9g9wjMKDF-QgjgrkAAv2ESgooC0UpdsAqAhiKQKr9mN91sAiHQoJywtyrgcR5rEK55u5iY3m8TweZbzdTYzK_4W5_HalCYvxjUvyixZxkfOF3k8S82m5DNTJGPesqvOfnp3d84pe5-bMlkGq2xxbA8aQbgPtKobso0TQrbkqH5tpVYYOWpCEAp1W1uMqAborIiQKFKtRQtEWiI528kpezz17ob-5-D8vtr2h-F7PFkJGWkZCqlgVE8n1Qy994Prqt3w8WWH3wqhOr6qQqrOrxrxwwlv_b4f_qVQWkgEkH9Zt1zg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Chen, Xi</creator><creator>Lee, Jason D.</creator><creator>Tong, Xin T.</creator><creator>Zhang, Yichen</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20200201</creationdate><title>STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT</title><author>Chen, Xi ; Lee, Jason D. ; Tong, Xin T. ; Zhang, Yichen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-96bc8ace223d8e8b7d39615e8c402619dba158b00fa2518856da1a0889318eaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computational efficiency</topic><topic>Confidence intervals</topic><topic>Covariance</topic><topic>Error analysis</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>Smoothness</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Lee, Jason D.</creatorcontrib><creatorcontrib>Tong, Xin T.</creatorcontrib><creatorcontrib>Zhang, Yichen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xi</au><au>Lee, Jason D.</au><au>Tong, Xin T.</au><au>Zhang, Yichen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT</atitle><jtitle>The Annals of statistics</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>48</volume><issue>1</issue><spage>251</spage><epage>273</epage><pages>251-273</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions. Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests. Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/18-AOS1801</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2020-02, Vol.48 (1), p.251-273
issn 0090-5364
2168-8966
language eng
recordid cdi_proquest_journals_2359342360
source JSTOR Mathematics & Statistics; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete; JSTOR
subjects Algorithms
Asymptotic methods
Asymptotic properties
Computational efficiency
Confidence intervals
Covariance
Error analysis
Estimating techniques
Estimators
Mathematical models
Parameters
Regression analysis
Regression coefficients
Smoothness
Statistical analysis
Statistical inference
Stochastic models
title STATISTICAL INFERENCE FOR MODEL PARAMETERS IN STOCHASTIC GRADIENT DESCENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STATISTICAL%20INFERENCE%20FOR%20MODEL%20PARAMETERS%20IN%20STOCHASTIC%20GRADIENT%20DESCENT&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Chen,%20Xi&rft.date=2020-02-01&rft.volume=48&rft.issue=1&rft.spage=251&rft.epage=273&rft.pages=251-273&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/18-AOS1801&rft_dat=%3Cjstor_proqu%3E26923100%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359342360&rft_id=info:pmid/&rft_jstor_id=26923100&rfr_iscdi=true