GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting

Autonomous vehicles leverage the data provided by a suite of sensors, combining measurements in order to provide precise and robust position estimation to localization and navigation systems. In this paper, an Adaptive Monte Carlo Localization algorithm is applied to an autonomous golf car, where da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2020-03, Vol.20 (6), p.3314-3323
Hauptverfasser: Perea-Strom, Daniel, Morell, Antonio, Toledo, Jonay, Acosta, Leopoldo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3323
container_issue 6
container_start_page 3314
container_title IEEE sensors journal
container_volume 20
creator Perea-Strom, Daniel
Morell, Antonio
Toledo, Jonay
Acosta, Leopoldo
description Autonomous vehicles leverage the data provided by a suite of sensors, combining measurements in order to provide precise and robust position estimation to localization and navigation systems. In this paper, an Adaptive Monte Carlo Localization algorithm is applied to an autonomous golf car, where data from wheel odometry, an inertial measurement unit, a Global Positioning System (GPS) and laser scanning is combined to estimate the pose of a vehicle in an outdoor environment. Monte Carlo Localization techniques allow the compensation of the technical flaws of different sensors by fusing the information delivered by each one. However, one of the main problems of fusing GPS data are sudden decreases of accuracy and sudden jumps on positions due to phenomenons like multi-path signal reception. In this paper, a particle weighting MCL model which integrates GPS measurements is proposed, and its performance is compared in several experiments with a particle generation approach when a GPS sensor suddenly provides erroneous data.
doi_str_mv 10.1109/JSEN.2019.2955210
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2358911458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8910578</ieee_id><sourcerecordid>2358911458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8764ab1c0a5493cb7ed25be5a6e34d7fb77541f6208a2c23b101ab01c38981e53</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhhujiYj-AONlE8_Fnd0uuz0iQcQQNKlft7otUyiBLu5uD_jrbS3xNJPJ876TPEFwDXQAQOO7p2SyGDAK8YDFQjCgJ0EPhFAhyEidtjunYcTl53lw4dyGNqQUshd8TRdJQmaVx5XVvjQVKSvi10jmJtfb8qe7JQfncUdMQXRFRrU3ldmZ2pF3XJf5Fsm9drgkDfiirf-7fGC5WvuyWl0GZ4XeOrw6zn7w9jB5HT-G8-fpbDyahzmLuQ-VHEY6g5xqEcU8zyQumchQ6CHyaCmLTEoRQTFkVGmWM54BBZ1RyLmKFaDg_eC2691b812j8-nG1LZqXqaMCxUDREI1FHRUbo1zFot0b8udtocUaNqKTFuRaSsyPYpsMjddpkTEf75ppEIq_guLam6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358911458</pqid></control><display><type>article</type><title>GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting</title><source>IEEE Electronic Library (IEL)</source><creator>Perea-Strom, Daniel ; Morell, Antonio ; Toledo, Jonay ; Acosta, Leopoldo</creator><creatorcontrib>Perea-Strom, Daniel ; Morell, Antonio ; Toledo, Jonay ; Acosta, Leopoldo</creatorcontrib><description>Autonomous vehicles leverage the data provided by a suite of sensors, combining measurements in order to provide precise and robust position estimation to localization and navigation systems. In this paper, an Adaptive Monte Carlo Localization algorithm is applied to an autonomous golf car, where data from wheel odometry, an inertial measurement unit, a Global Positioning System (GPS) and laser scanning is combined to estimate the pose of a vehicle in an outdoor environment. Monte Carlo Localization techniques allow the compensation of the technical flaws of different sensors by fusing the information delivered by each one. However, one of the main problems of fusing GPS data are sudden decreases of accuracy and sudden jumps on positions due to phenomenons like multi-path signal reception. In this paper, a particle weighting MCL model which integrates GPS measurements is proposed, and its performance is compared in several experiments with a particle generation approach when a GPS sensor suddenly provides erroneous data.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2955210</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Adaptive systems ; Atmospheric measurements ; Autonomous vehicles ; Computer simulation ; Global navigation satellite system ; Global Positioning System ; Global positioning systems ; GPS ; Inertial platforms ; Laser radar ; Localization ; Navigation systems ; Odometers ; Particle measurements ; Position measurement ; Position sensing ; robot sensing systems ; Satellite navigation systems ; Sensor fusion ; Sensors ; Signal reception ; simultaneous localization and mapping (SLAM) ; Weighting</subject><ispartof>IEEE sensors journal, 2020-03, Vol.20 (6), p.3314-3323</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8764ab1c0a5493cb7ed25be5a6e34d7fb77541f6208a2c23b101ab01c38981e53</citedby><cites>FETCH-LOGICAL-c293t-8764ab1c0a5493cb7ed25be5a6e34d7fb77541f6208a2c23b101ab01c38981e53</cites><orcidid>0000-0003-2789-4799 ; 0000-0001-9428-4507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8910578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8910578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Perea-Strom, Daniel</creatorcontrib><creatorcontrib>Morell, Antonio</creatorcontrib><creatorcontrib>Toledo, Jonay</creatorcontrib><creatorcontrib>Acosta, Leopoldo</creatorcontrib><title>GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Autonomous vehicles leverage the data provided by a suite of sensors, combining measurements in order to provide precise and robust position estimation to localization and navigation systems. In this paper, an Adaptive Monte Carlo Localization algorithm is applied to an autonomous golf car, where data from wheel odometry, an inertial measurement unit, a Global Positioning System (GPS) and laser scanning is combined to estimate the pose of a vehicle in an outdoor environment. Monte Carlo Localization techniques allow the compensation of the technical flaws of different sensors by fusing the information delivered by each one. However, one of the main problems of fusing GPS data are sudden decreases of accuracy and sudden jumps on positions due to phenomenons like multi-path signal reception. In this paper, a particle weighting MCL model which integrates GPS measurements is proposed, and its performance is compared in several experiments with a particle generation approach when a GPS sensor suddenly provides erroneous data.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Atmospheric measurements</subject><subject>Autonomous vehicles</subject><subject>Computer simulation</subject><subject>Global navigation satellite system</subject><subject>Global Positioning System</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Inertial platforms</subject><subject>Laser radar</subject><subject>Localization</subject><subject>Navigation systems</subject><subject>Odometers</subject><subject>Particle measurements</subject><subject>Position measurement</subject><subject>Position sensing</subject><subject>robot sensing systems</subject><subject>Satellite navigation systems</subject><subject>Sensor fusion</subject><subject>Sensors</subject><subject>Signal reception</subject><subject>simultaneous localization and mapping (SLAM)</subject><subject>Weighting</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhhujiYj-AONlE8_Fnd0uuz0iQcQQNKlft7otUyiBLu5uD_jrbS3xNJPJ876TPEFwDXQAQOO7p2SyGDAK8YDFQjCgJ0EPhFAhyEidtjunYcTl53lw4dyGNqQUshd8TRdJQmaVx5XVvjQVKSvi10jmJtfb8qe7JQfncUdMQXRFRrU3ldmZ2pF3XJf5Fsm9drgkDfiirf-7fGC5WvuyWl0GZ4XeOrw6zn7w9jB5HT-G8-fpbDyahzmLuQ-VHEY6g5xqEcU8zyQumchQ6CHyaCmLTEoRQTFkVGmWM54BBZ1RyLmKFaDg_eC2691b812j8-nG1LZqXqaMCxUDREI1FHRUbo1zFot0b8udtocUaNqKTFuRaSsyPYpsMjddpkTEf75ppEIq_guLam6o</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Perea-Strom, Daniel</creator><creator>Morell, Antonio</creator><creator>Toledo, Jonay</creator><creator>Acosta, Leopoldo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2789-4799</orcidid><orcidid>https://orcid.org/0000-0001-9428-4507</orcidid></search><sort><creationdate>20200315</creationdate><title>GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting</title><author>Perea-Strom, Daniel ; Morell, Antonio ; Toledo, Jonay ; Acosta, Leopoldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8764ab1c0a5493cb7ed25be5a6e34d7fb77541f6208a2c23b101ab01c38981e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Atmospheric measurements</topic><topic>Autonomous vehicles</topic><topic>Computer simulation</topic><topic>Global navigation satellite system</topic><topic>Global Positioning System</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Inertial platforms</topic><topic>Laser radar</topic><topic>Localization</topic><topic>Navigation systems</topic><topic>Odometers</topic><topic>Particle measurements</topic><topic>Position measurement</topic><topic>Position sensing</topic><topic>robot sensing systems</topic><topic>Satellite navigation systems</topic><topic>Sensor fusion</topic><topic>Sensors</topic><topic>Signal reception</topic><topic>simultaneous localization and mapping (SLAM)</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perea-Strom, Daniel</creatorcontrib><creatorcontrib>Morell, Antonio</creatorcontrib><creatorcontrib>Toledo, Jonay</creatorcontrib><creatorcontrib>Acosta, Leopoldo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perea-Strom, Daniel</au><au>Morell, Antonio</au><au>Toledo, Jonay</au><au>Acosta, Leopoldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-03-15</date><risdate>2020</risdate><volume>20</volume><issue>6</issue><spage>3314</spage><epage>3323</epage><pages>3314-3323</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Autonomous vehicles leverage the data provided by a suite of sensors, combining measurements in order to provide precise and robust position estimation to localization and navigation systems. In this paper, an Adaptive Monte Carlo Localization algorithm is applied to an autonomous golf car, where data from wheel odometry, an inertial measurement unit, a Global Positioning System (GPS) and laser scanning is combined to estimate the pose of a vehicle in an outdoor environment. Monte Carlo Localization techniques allow the compensation of the technical flaws of different sensors by fusing the information delivered by each one. However, one of the main problems of fusing GPS data are sudden decreases of accuracy and sudden jumps on positions due to phenomenons like multi-path signal reception. In this paper, a particle weighting MCL model which integrates GPS measurements is proposed, and its performance is compared in several experiments with a particle generation approach when a GPS sensor suddenly provides erroneous data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2955210</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2789-4799</orcidid><orcidid>https://orcid.org/0000-0001-9428-4507</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2020-03, Vol.20 (6), p.3314-3323
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2358911458
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Adaptive systems
Atmospheric measurements
Autonomous vehicles
Computer simulation
Global navigation satellite system
Global Positioning System
Global positioning systems
GPS
Inertial platforms
Laser radar
Localization
Navigation systems
Odometers
Particle measurements
Position measurement
Position sensing
robot sensing systems
Satellite navigation systems
Sensor fusion
Sensors
Signal reception
simultaneous localization and mapping (SLAM)
Weighting
title GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GNSS%20Integration%20in%20the%20Localization%20System%20of%20an%20Autonomous%20Vehicle%20Based%20on%20Particle%20Weighting&rft.jtitle=IEEE%20sensors%20journal&rft.au=Perea-Strom,%20Daniel&rft.date=2020-03-15&rft.volume=20&rft.issue=6&rft.spage=3314&rft.epage=3323&rft.pages=3314-3323&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2955210&rft_dat=%3Cproquest_RIE%3E2358911458%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358911458&rft_id=info:pmid/&rft_ieee_id=8910578&rfr_iscdi=true