GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting
Autonomous vehicles leverage the data provided by a suite of sensors, combining measurements in order to provide precise and robust position estimation to localization and navigation systems. In this paper, an Adaptive Monte Carlo Localization algorithm is applied to an autonomous golf car, where da...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2020-03, Vol.20 (6), p.3314-3323 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3323 |
---|---|
container_issue | 6 |
container_start_page | 3314 |
container_title | IEEE sensors journal |
container_volume | 20 |
creator | Perea-Strom, Daniel Morell, Antonio Toledo, Jonay Acosta, Leopoldo |
description | Autonomous vehicles leverage the data provided by a suite of sensors, combining measurements in order to provide precise and robust position estimation to localization and navigation systems. In this paper, an Adaptive Monte Carlo Localization algorithm is applied to an autonomous golf car, where data from wheel odometry, an inertial measurement unit, a Global Positioning System (GPS) and laser scanning is combined to estimate the pose of a vehicle in an outdoor environment. Monte Carlo Localization techniques allow the compensation of the technical flaws of different sensors by fusing the information delivered by each one. However, one of the main problems of fusing GPS data are sudden decreases of accuracy and sudden jumps on positions due to phenomenons like multi-path signal reception. In this paper, a particle weighting MCL model which integrates GPS measurements is proposed, and its performance is compared in several experiments with a particle generation approach when a GPS sensor suddenly provides erroneous data. |
doi_str_mv | 10.1109/JSEN.2019.2955210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2358911458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8910578</ieee_id><sourcerecordid>2358911458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8764ab1c0a5493cb7ed25be5a6e34d7fb77541f6208a2c23b101ab01c38981e53</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhhujiYj-AONlE8_Fnd0uuz0iQcQQNKlft7otUyiBLu5uD_jrbS3xNJPJ876TPEFwDXQAQOO7p2SyGDAK8YDFQjCgJ0EPhFAhyEidtjunYcTl53lw4dyGNqQUshd8TRdJQmaVx5XVvjQVKSvi10jmJtfb8qe7JQfncUdMQXRFRrU3ldmZ2pF3XJf5Fsm9drgkDfiirf-7fGC5WvuyWl0GZ4XeOrw6zn7w9jB5HT-G8-fpbDyahzmLuQ-VHEY6g5xqEcU8zyQumchQ6CHyaCmLTEoRQTFkVGmWM54BBZ1RyLmKFaDg_eC2691b812j8-nG1LZqXqaMCxUDREI1FHRUbo1zFot0b8udtocUaNqKTFuRaSsyPYpsMjddpkTEf75ppEIq_guLam6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358911458</pqid></control><display><type>article</type><title>GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting</title><source>IEEE Electronic Library (IEL)</source><creator>Perea-Strom, Daniel ; Morell, Antonio ; Toledo, Jonay ; Acosta, Leopoldo</creator><creatorcontrib>Perea-Strom, Daniel ; Morell, Antonio ; Toledo, Jonay ; Acosta, Leopoldo</creatorcontrib><description>Autonomous vehicles leverage the data provided by a suite of sensors, combining measurements in order to provide precise and robust position estimation to localization and navigation systems. In this paper, an Adaptive Monte Carlo Localization algorithm is applied to an autonomous golf car, where data from wheel odometry, an inertial measurement unit, a Global Positioning System (GPS) and laser scanning is combined to estimate the pose of a vehicle in an outdoor environment. Monte Carlo Localization techniques allow the compensation of the technical flaws of different sensors by fusing the information delivered by each one. However, one of the main problems of fusing GPS data are sudden decreases of accuracy and sudden jumps on positions due to phenomenons like multi-path signal reception. In this paper, a particle weighting MCL model which integrates GPS measurements is proposed, and its performance is compared in several experiments with a particle generation approach when a GPS sensor suddenly provides erroneous data.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2955210</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Adaptive systems ; Atmospheric measurements ; Autonomous vehicles ; Computer simulation ; Global navigation satellite system ; Global Positioning System ; Global positioning systems ; GPS ; Inertial platforms ; Laser radar ; Localization ; Navigation systems ; Odometers ; Particle measurements ; Position measurement ; Position sensing ; robot sensing systems ; Satellite navigation systems ; Sensor fusion ; Sensors ; Signal reception ; simultaneous localization and mapping (SLAM) ; Weighting</subject><ispartof>IEEE sensors journal, 2020-03, Vol.20 (6), p.3314-3323</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8764ab1c0a5493cb7ed25be5a6e34d7fb77541f6208a2c23b101ab01c38981e53</citedby><cites>FETCH-LOGICAL-c293t-8764ab1c0a5493cb7ed25be5a6e34d7fb77541f6208a2c23b101ab01c38981e53</cites><orcidid>0000-0003-2789-4799 ; 0000-0001-9428-4507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8910578$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8910578$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Perea-Strom, Daniel</creatorcontrib><creatorcontrib>Morell, Antonio</creatorcontrib><creatorcontrib>Toledo, Jonay</creatorcontrib><creatorcontrib>Acosta, Leopoldo</creatorcontrib><title>GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Autonomous vehicles leverage the data provided by a suite of sensors, combining measurements in order to provide precise and robust position estimation to localization and navigation systems. In this paper, an Adaptive Monte Carlo Localization algorithm is applied to an autonomous golf car, where data from wheel odometry, an inertial measurement unit, a Global Positioning System (GPS) and laser scanning is combined to estimate the pose of a vehicle in an outdoor environment. Monte Carlo Localization techniques allow the compensation of the technical flaws of different sensors by fusing the information delivered by each one. However, one of the main problems of fusing GPS data are sudden decreases of accuracy and sudden jumps on positions due to phenomenons like multi-path signal reception. In this paper, a particle weighting MCL model which integrates GPS measurements is proposed, and its performance is compared in several experiments with a particle generation approach when a GPS sensor suddenly provides erroneous data.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Atmospheric measurements</subject><subject>Autonomous vehicles</subject><subject>Computer simulation</subject><subject>Global navigation satellite system</subject><subject>Global Positioning System</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Inertial platforms</subject><subject>Laser radar</subject><subject>Localization</subject><subject>Navigation systems</subject><subject>Odometers</subject><subject>Particle measurements</subject><subject>Position measurement</subject><subject>Position sensing</subject><subject>robot sensing systems</subject><subject>Satellite navigation systems</subject><subject>Sensor fusion</subject><subject>Sensors</subject><subject>Signal reception</subject><subject>simultaneous localization and mapping (SLAM)</subject><subject>Weighting</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhhujiYj-AONlE8_Fnd0uuz0iQcQQNKlft7otUyiBLu5uD_jrbS3xNJPJ876TPEFwDXQAQOO7p2SyGDAK8YDFQjCgJ0EPhFAhyEidtjunYcTl53lw4dyGNqQUshd8TRdJQmaVx5XVvjQVKSvi10jmJtfb8qe7JQfncUdMQXRFRrU3ldmZ2pF3XJf5Fsm9drgkDfiirf-7fGC5WvuyWl0GZ4XeOrw6zn7w9jB5HT-G8-fpbDyahzmLuQ-VHEY6g5xqEcU8zyQumchQ6CHyaCmLTEoRQTFkVGmWM54BBZ1RyLmKFaDg_eC2691b812j8-nG1LZqXqaMCxUDREI1FHRUbo1zFot0b8udtocUaNqKTFuRaSsyPYpsMjddpkTEf75ppEIq_guLam6o</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Perea-Strom, Daniel</creator><creator>Morell, Antonio</creator><creator>Toledo, Jonay</creator><creator>Acosta, Leopoldo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2789-4799</orcidid><orcidid>https://orcid.org/0000-0001-9428-4507</orcidid></search><sort><creationdate>20200315</creationdate><title>GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting</title><author>Perea-Strom, Daniel ; Morell, Antonio ; Toledo, Jonay ; Acosta, Leopoldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8764ab1c0a5493cb7ed25be5a6e34d7fb77541f6208a2c23b101ab01c38981e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Atmospheric measurements</topic><topic>Autonomous vehicles</topic><topic>Computer simulation</topic><topic>Global navigation satellite system</topic><topic>Global Positioning System</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Inertial platforms</topic><topic>Laser radar</topic><topic>Localization</topic><topic>Navigation systems</topic><topic>Odometers</topic><topic>Particle measurements</topic><topic>Position measurement</topic><topic>Position sensing</topic><topic>robot sensing systems</topic><topic>Satellite navigation systems</topic><topic>Sensor fusion</topic><topic>Sensors</topic><topic>Signal reception</topic><topic>simultaneous localization and mapping (SLAM)</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perea-Strom, Daniel</creatorcontrib><creatorcontrib>Morell, Antonio</creatorcontrib><creatorcontrib>Toledo, Jonay</creatorcontrib><creatorcontrib>Acosta, Leopoldo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perea-Strom, Daniel</au><au>Morell, Antonio</au><au>Toledo, Jonay</au><au>Acosta, Leopoldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-03-15</date><risdate>2020</risdate><volume>20</volume><issue>6</issue><spage>3314</spage><epage>3323</epage><pages>3314-3323</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Autonomous vehicles leverage the data provided by a suite of sensors, combining measurements in order to provide precise and robust position estimation to localization and navigation systems. In this paper, an Adaptive Monte Carlo Localization algorithm is applied to an autonomous golf car, where data from wheel odometry, an inertial measurement unit, a Global Positioning System (GPS) and laser scanning is combined to estimate the pose of a vehicle in an outdoor environment. Monte Carlo Localization techniques allow the compensation of the technical flaws of different sensors by fusing the information delivered by each one. However, one of the main problems of fusing GPS data are sudden decreases of accuracy and sudden jumps on positions due to phenomenons like multi-path signal reception. In this paper, a particle weighting MCL model which integrates GPS measurements is proposed, and its performance is compared in several experiments with a particle generation approach when a GPS sensor suddenly provides erroneous data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2955210</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2789-4799</orcidid><orcidid>https://orcid.org/0000-0001-9428-4507</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2020-03, Vol.20 (6), p.3314-3323 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2358911458 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithms Adaptive systems Atmospheric measurements Autonomous vehicles Computer simulation Global navigation satellite system Global Positioning System Global positioning systems GPS Inertial platforms Laser radar Localization Navigation systems Odometers Particle measurements Position measurement Position sensing robot sensing systems Satellite navigation systems Sensor fusion Sensors Signal reception simultaneous localization and mapping (SLAM) Weighting |
title | GNSS Integration in the Localization System of an Autonomous Vehicle Based on Particle Weighting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GNSS%20Integration%20in%20the%20Localization%20System%20of%20an%20Autonomous%20Vehicle%20Based%20on%20Particle%20Weighting&rft.jtitle=IEEE%20sensors%20journal&rft.au=Perea-Strom,%20Daniel&rft.date=2020-03-15&rft.volume=20&rft.issue=6&rft.spage=3314&rft.epage=3323&rft.pages=3314-3323&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2955210&rft_dat=%3Cproquest_RIE%3E2358911458%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358911458&rft_id=info:pmid/&rft_ieee_id=8910578&rfr_iscdi=true |