Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation

Electromagnetic-based actuation is receiving increasing attention for driving microparticles, particularly for in vivo biomedical applications. In this article, we present a core shape design for electromagnetic coils to develop a magnetic gradient field-based actuation system that can enable micror...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2020-06, Vol.67 (6), p.4700-4710
Hauptverfasser: Li, Dongfang, Niu, Fuzhou, Li, Junyang, Li, Xiaojian, Sun, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4710
container_issue 6
container_start_page 4700
container_title IEEE transactions on industrial electronics (1982)
container_volume 67
creator Li, Dongfang
Niu, Fuzhou
Li, Junyang
Li, Xiaojian
Sun, Dong
description Electromagnetic-based actuation is receiving increasing attention for driving microparticles, particularly for in vivo biomedical applications. In this article, we present a core shape design for electromagnetic coils to develop a magnetic gradient field-based actuation system that can enable microrobotic manipulation. Based on the mathematical model using the finite-element method, the shape of the iron core and the size of the probe are optimized, aiming to increase the gradient at the focused area. A thin disc is also attached to the end of the iron core for reducing the waste of magnetic field energy. Through this design, the magnetic field generated by the electromagnetic actuation system can be considerably enhanced to propel microrobots in the in vivo environments. The designed system is tested in different in vitro environments, including pure water, artificial cerebrospinal fluid, mouse blood, and a special environment with an extremely high viscosity coefficient. The system is also tested for driving microrobots in an in vivo environment, namely, zebrafish yolk. Experimental results effectively demonstrate the capacity of the designed platform in manipulating microrobots for in vitro and in vivo applications.
doi_str_mv 10.1109/TIE.2019.2928283
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2358910888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8768330</ieee_id><sourcerecordid>2358910888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-26718aad863a46a589f82a8f855ed9b78cb011a496fe17f46b917131e2e6ab6f3</originalsourceid><addsrcrecordid>eNo9kMFPwjAUhxujiYjeTbw08Txsu61rjwQnkoAewHhsuu0VirDOrovhv3cI8fQO7_f93suH0D0lI0qJfFrN8hEjVI6YZIKJ-AINaJpmkZSJuEQDwjIREZLwa3TTtltCaJLSdIC-pl5XFuoQ5fVG1yVUON9BGbzb63UNwZZ4XIZOB-tqvDy0Afb404YN1vgNfvDEecDLjW4AP0Nr1zU2zuOFLb3zrnABL3Rtm273x9-iK6N3Ldyd5xB9vOSryWs0f5_OJuN5VMaxCBHjGRVaV4LHOuE6FdIIpoURaQqVLDJRFoRSnUhugGYm4YWkGY0pMOC64CYeosdTb-PddwdtUFvX-bo_qVjc11EihOhT5JTqf21bD0Y13u61PyhK1FGp6pWqo1J1VtojDyfEAsB_XGS835H4F7PLcp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358910888</pqid></control><display><type>article</type><title>Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Dongfang ; Niu, Fuzhou ; Li, Junyang ; Li, Xiaojian ; Sun, Dong</creator><creatorcontrib>Li, Dongfang ; Niu, Fuzhou ; Li, Junyang ; Li, Xiaojian ; Sun, Dong</creatorcontrib><description>Electromagnetic-based actuation is receiving increasing attention for driving microparticles, particularly for in vivo biomedical applications. In this article, we present a core shape design for electromagnetic coils to develop a magnetic gradient field-based actuation system that can enable microrobotic manipulation. Based on the mathematical model using the finite-element method, the shape of the iron core and the size of the probe are optimized, aiming to increase the gradient at the focused area. A thin disc is also attached to the end of the iron core for reducing the waste of magnetic field energy. Through this design, the magnetic field generated by the electromagnetic actuation system can be considerably enhanced to propel microrobots in the in vivo environments. The designed system is tested in different in vitro environments, including pure water, artificial cerebrospinal fluid, mouse blood, and a special environment with an extremely high viscosity coefficient. The system is also tested for driving microrobots in an in vivo environment, namely, zebrafish yolk. Experimental results effectively demonstrate the capacity of the designed platform in manipulating microrobots for in vitro and in vivo applications.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2928283</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> in vivo</tex-math> </inline-formula> </named-content> experiments ; Actuation ; Biomedical materials ; Cerebrospinal fluid ; Coils ; Core shape design of electromagnetic coils ; Design ; Electromagnetics ; Finite element method ; Iron ; Magnetic cores ; Magnetic fields ; Mathematical analysis ; Microparticles ; microrobot ; microrobot manipulation ; Microrobots ; Probes ; Shape ; Zebrafish]]></subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-06, Vol.67 (6), p.4700-4710</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-26718aad863a46a589f82a8f855ed9b78cb011a496fe17f46b917131e2e6ab6f3</citedby><cites>FETCH-LOGICAL-c338t-26718aad863a46a589f82a8f855ed9b78cb011a496fe17f46b917131e2e6ab6f3</cites><orcidid>0000-0002-6967-7146 ; 0000-0002-1847-4920 ; 0000-0003-3945-4037 ; 0000-0002-3175-7810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8768330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8768330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Dongfang</creatorcontrib><creatorcontrib>Niu, Fuzhou</creatorcontrib><creatorcontrib>Li, Junyang</creatorcontrib><creatorcontrib>Li, Xiaojian</creatorcontrib><creatorcontrib>Sun, Dong</creatorcontrib><title>Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Electromagnetic-based actuation is receiving increasing attention for driving microparticles, particularly for in vivo biomedical applications. In this article, we present a core shape design for electromagnetic coils to develop a magnetic gradient field-based actuation system that can enable microrobotic manipulation. Based on the mathematical model using the finite-element method, the shape of the iron core and the size of the probe are optimized, aiming to increase the gradient at the focused area. A thin disc is also attached to the end of the iron core for reducing the waste of magnetic field energy. Through this design, the magnetic field generated by the electromagnetic actuation system can be considerably enhanced to propel microrobots in the in vivo environments. The designed system is tested in different in vitro environments, including pure water, artificial cerebrospinal fluid, mouse blood, and a special environment with an extremely high viscosity coefficient. The system is also tested for driving microrobots in an in vivo environment, namely, zebrafish yolk. Experimental results effectively demonstrate the capacity of the designed platform in manipulating microrobots for in vitro and in vivo applications.</description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> in vivo</tex-math> </inline-formula> </named-content> experiments]]></subject><subject>Actuation</subject><subject>Biomedical materials</subject><subject>Cerebrospinal fluid</subject><subject>Coils</subject><subject>Core shape design of electromagnetic coils</subject><subject>Design</subject><subject>Electromagnetics</subject><subject>Finite element method</subject><subject>Iron</subject><subject>Magnetic cores</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Microparticles</subject><subject>microrobot</subject><subject>microrobot manipulation</subject><subject>Microrobots</subject><subject>Probes</subject><subject>Shape</subject><subject>Zebrafish</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFPwjAUhxujiYjeTbw08Txsu61rjwQnkoAewHhsuu0VirDOrovhv3cI8fQO7_f93suH0D0lI0qJfFrN8hEjVI6YZIKJ-AINaJpmkZSJuEQDwjIREZLwa3TTtltCaJLSdIC-pl5XFuoQ5fVG1yVUON9BGbzb63UNwZZ4XIZOB-tqvDy0Afb404YN1vgNfvDEecDLjW4AP0Nr1zU2zuOFLb3zrnABL3Rtm273x9-iK6N3Ldyd5xB9vOSryWs0f5_OJuN5VMaxCBHjGRVaV4LHOuE6FdIIpoURaQqVLDJRFoRSnUhugGYm4YWkGY0pMOC64CYeosdTb-PddwdtUFvX-bo_qVjc11EihOhT5JTqf21bD0Y13u61PyhK1FGp6pWqo1J1VtojDyfEAsB_XGS835H4F7PLcp8</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Dongfang</creator><creator>Niu, Fuzhou</creator><creator>Li, Junyang</creator><creator>Li, Xiaojian</creator><creator>Sun, Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6967-7146</orcidid><orcidid>https://orcid.org/0000-0002-1847-4920</orcidid><orcidid>https://orcid.org/0000-0003-3945-4037</orcidid><orcidid>https://orcid.org/0000-0002-3175-7810</orcidid></search><sort><creationdate>20200601</creationdate><title>Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation</title><author>Li, Dongfang ; Niu, Fuzhou ; Li, Junyang ; Li, Xiaojian ; Sun, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-26718aad863a46a589f82a8f855ed9b78cb011a496fe17f46b917131e2e6ab6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> in vivo</tex-math> </inline-formula> </named-content> experiments]]></topic><topic>Actuation</topic><topic>Biomedical materials</topic><topic>Cerebrospinal fluid</topic><topic>Coils</topic><topic>Core shape design of electromagnetic coils</topic><topic>Design</topic><topic>Electromagnetics</topic><topic>Finite element method</topic><topic>Iron</topic><topic>Magnetic cores</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Microparticles</topic><topic>microrobot</topic><topic>microrobot manipulation</topic><topic>Microrobots</topic><topic>Probes</topic><topic>Shape</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dongfang</creatorcontrib><creatorcontrib>Niu, Fuzhou</creatorcontrib><creatorcontrib>Li, Junyang</creatorcontrib><creatorcontrib>Li, Xiaojian</creatorcontrib><creatorcontrib>Sun, Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Dongfang</au><au>Niu, Fuzhou</au><au>Li, Junyang</au><au>Li, Xiaojian</au><au>Sun, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>67</volume><issue>6</issue><spage>4700</spage><epage>4710</epage><pages>4700-4710</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Electromagnetic-based actuation is receiving increasing attention for driving microparticles, particularly for in vivo biomedical applications. In this article, we present a core shape design for electromagnetic coils to develop a magnetic gradient field-based actuation system that can enable microrobotic manipulation. Based on the mathematical model using the finite-element method, the shape of the iron core and the size of the probe are optimized, aiming to increase the gradient at the focused area. A thin disc is also attached to the end of the iron core for reducing the waste of magnetic field energy. Through this design, the magnetic field generated by the electromagnetic actuation system can be considerably enhanced to propel microrobots in the in vivo environments. The designed system is tested in different in vitro environments, including pure water, artificial cerebrospinal fluid, mouse blood, and a special environment with an extremely high viscosity coefficient. The system is also tested for driving microrobots in an in vivo environment, namely, zebrafish yolk. Experimental results effectively demonstrate the capacity of the designed platform in manipulating microrobots for in vitro and in vivo applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2928283</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6967-7146</orcidid><orcidid>https://orcid.org/0000-0002-1847-4920</orcidid><orcidid>https://orcid.org/0000-0003-3945-4037</orcidid><orcidid>https://orcid.org/0000-0002-3175-7810</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2020-06, Vol.67 (6), p.4700-4710
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2358910888
source IEEE Electronic Library (IEL)
subjects <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> in vivo</tex-math> </inline-formula> </named-content> experiments
Actuation
Biomedical materials
Cerebrospinal fluid
Coils
Core shape design of electromagnetic coils
Design
Electromagnetics
Finite element method
Iron
Magnetic cores
Magnetic fields
Mathematical analysis
Microparticles
microrobot
microrobot manipulation
Microrobots
Probes
Shape
Zebrafish
title Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient-Enhanced%20Electromagnetic%20Actuation%20System%20With%20a%20New%20Core%20Shape%20Design%20for%20Microrobot%20Manipulation&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Li,%20Dongfang&rft.date=2020-06-01&rft.volume=67&rft.issue=6&rft.spage=4700&rft.epage=4710&rft.pages=4700-4710&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2928283&rft_dat=%3Cproquest_RIE%3E2358910888%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358910888&rft_id=info:pmid/&rft_ieee_id=8768330&rfr_iscdi=true