Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation
Electromagnetic-based actuation is receiving increasing attention for driving microparticles, particularly for in vivo biomedical applications. In this article, we present a core shape design for electromagnetic coils to develop a magnetic gradient field-based actuation system that can enable micror...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2020-06, Vol.67 (6), p.4700-4710 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4710 |
---|---|
container_issue | 6 |
container_start_page | 4700 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 67 |
creator | Li, Dongfang Niu, Fuzhou Li, Junyang Li, Xiaojian Sun, Dong |
description | Electromagnetic-based actuation is receiving increasing attention for driving microparticles, particularly for in vivo biomedical applications. In this article, we present a core shape design for electromagnetic coils to develop a magnetic gradient field-based actuation system that can enable microrobotic manipulation. Based on the mathematical model using the finite-element method, the shape of the iron core and the size of the probe are optimized, aiming to increase the gradient at the focused area. A thin disc is also attached to the end of the iron core for reducing the waste of magnetic field energy. Through this design, the magnetic field generated by the electromagnetic actuation system can be considerably enhanced to propel microrobots in the in vivo environments. The designed system is tested in different in vitro environments, including pure water, artificial cerebrospinal fluid, mouse blood, and a special environment with an extremely high viscosity coefficient. The system is also tested for driving microrobots in an in vivo environment, namely, zebrafish yolk. Experimental results effectively demonstrate the capacity of the designed platform in manipulating microrobots for in vitro and in vivo applications. |
doi_str_mv | 10.1109/TIE.2019.2928283 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2358910888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8768330</ieee_id><sourcerecordid>2358910888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-26718aad863a46a589f82a8f855ed9b78cb011a496fe17f46b917131e2e6ab6f3</originalsourceid><addsrcrecordid>eNo9kMFPwjAUhxujiYjeTbw08Txsu61rjwQnkoAewHhsuu0VirDOrovhv3cI8fQO7_f93suH0D0lI0qJfFrN8hEjVI6YZIKJ-AINaJpmkZSJuEQDwjIREZLwa3TTtltCaJLSdIC-pl5XFuoQ5fVG1yVUON9BGbzb63UNwZZ4XIZOB-tqvDy0Afb404YN1vgNfvDEecDLjW4AP0Nr1zU2zuOFLb3zrnABL3Rtm273x9-iK6N3Ldyd5xB9vOSryWs0f5_OJuN5VMaxCBHjGRVaV4LHOuE6FdIIpoURaQqVLDJRFoRSnUhugGYm4YWkGY0pMOC64CYeosdTb-PddwdtUFvX-bo_qVjc11EihOhT5JTqf21bD0Y13u61PyhK1FGp6pWqo1J1VtojDyfEAsB_XGS835H4F7PLcp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358910888</pqid></control><display><type>article</type><title>Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Dongfang ; Niu, Fuzhou ; Li, Junyang ; Li, Xiaojian ; Sun, Dong</creator><creatorcontrib>Li, Dongfang ; Niu, Fuzhou ; Li, Junyang ; Li, Xiaojian ; Sun, Dong</creatorcontrib><description>Electromagnetic-based actuation is receiving increasing attention for driving microparticles, particularly for in vivo biomedical applications. In this article, we present a core shape design for electromagnetic coils to develop a magnetic gradient field-based actuation system that can enable microrobotic manipulation. Based on the mathematical model using the finite-element method, the shape of the iron core and the size of the probe are optimized, aiming to increase the gradient at the focused area. A thin disc is also attached to the end of the iron core for reducing the waste of magnetic field energy. Through this design, the magnetic field generated by the electromagnetic actuation system can be considerably enhanced to propel microrobots in the in vivo environments. The designed system is tested in different in vitro environments, including pure water, artificial cerebrospinal fluid, mouse blood, and a special environment with an extremely high viscosity coefficient. The system is also tested for driving microrobots in an in vivo environment, namely, zebrafish yolk. Experimental results effectively demonstrate the capacity of the designed platform in manipulating microrobots for in vitro and in vivo applications.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2019.2928283</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> in vivo</tex-math> </inline-formula> </named-content> experiments ; Actuation ; Biomedical materials ; Cerebrospinal fluid ; Coils ; Core shape design of electromagnetic coils ; Design ; Electromagnetics ; Finite element method ; Iron ; Magnetic cores ; Magnetic fields ; Mathematical analysis ; Microparticles ; microrobot ; microrobot manipulation ; Microrobots ; Probes ; Shape ; Zebrafish]]></subject><ispartof>IEEE transactions on industrial electronics (1982), 2020-06, Vol.67 (6), p.4700-4710</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-26718aad863a46a589f82a8f855ed9b78cb011a496fe17f46b917131e2e6ab6f3</citedby><cites>FETCH-LOGICAL-c338t-26718aad863a46a589f82a8f855ed9b78cb011a496fe17f46b917131e2e6ab6f3</cites><orcidid>0000-0002-6967-7146 ; 0000-0002-1847-4920 ; 0000-0003-3945-4037 ; 0000-0002-3175-7810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8768330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8768330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Dongfang</creatorcontrib><creatorcontrib>Niu, Fuzhou</creatorcontrib><creatorcontrib>Li, Junyang</creatorcontrib><creatorcontrib>Li, Xiaojian</creatorcontrib><creatorcontrib>Sun, Dong</creatorcontrib><title>Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Electromagnetic-based actuation is receiving increasing attention for driving microparticles, particularly for in vivo biomedical applications. In this article, we present a core shape design for electromagnetic coils to develop a magnetic gradient field-based actuation system that can enable microrobotic manipulation. Based on the mathematical model using the finite-element method, the shape of the iron core and the size of the probe are optimized, aiming to increase the gradient at the focused area. A thin disc is also attached to the end of the iron core for reducing the waste of magnetic field energy. Through this design, the magnetic field generated by the electromagnetic actuation system can be considerably enhanced to propel microrobots in the in vivo environments. The designed system is tested in different in vitro environments, including pure water, artificial cerebrospinal fluid, mouse blood, and a special environment with an extremely high viscosity coefficient. The system is also tested for driving microrobots in an in vivo environment, namely, zebrafish yolk. Experimental results effectively demonstrate the capacity of the designed platform in manipulating microrobots for in vitro and in vivo applications.</description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> in vivo</tex-math> </inline-formula> </named-content> experiments]]></subject><subject>Actuation</subject><subject>Biomedical materials</subject><subject>Cerebrospinal fluid</subject><subject>Coils</subject><subject>Core shape design of electromagnetic coils</subject><subject>Design</subject><subject>Electromagnetics</subject><subject>Finite element method</subject><subject>Iron</subject><subject>Magnetic cores</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Microparticles</subject><subject>microrobot</subject><subject>microrobot manipulation</subject><subject>Microrobots</subject><subject>Probes</subject><subject>Shape</subject><subject>Zebrafish</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFPwjAUhxujiYjeTbw08Txsu61rjwQnkoAewHhsuu0VirDOrovhv3cI8fQO7_f93suH0D0lI0qJfFrN8hEjVI6YZIKJ-AINaJpmkZSJuEQDwjIREZLwa3TTtltCaJLSdIC-pl5XFuoQ5fVG1yVUON9BGbzb63UNwZZ4XIZOB-tqvDy0Afb404YN1vgNfvDEecDLjW4AP0Nr1zU2zuOFLb3zrnABL3Rtm273x9-iK6N3Ldyd5xB9vOSryWs0f5_OJuN5VMaxCBHjGRVaV4LHOuE6FdIIpoURaQqVLDJRFoRSnUhugGYm4YWkGY0pMOC64CYeosdTb-PddwdtUFvX-bo_qVjc11EihOhT5JTqf21bD0Y13u61PyhK1FGp6pWqo1J1VtojDyfEAsB_XGS835H4F7PLcp8</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Dongfang</creator><creator>Niu, Fuzhou</creator><creator>Li, Junyang</creator><creator>Li, Xiaojian</creator><creator>Sun, Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6967-7146</orcidid><orcidid>https://orcid.org/0000-0002-1847-4920</orcidid><orcidid>https://orcid.org/0000-0003-3945-4037</orcidid><orcidid>https://orcid.org/0000-0002-3175-7810</orcidid></search><sort><creationdate>20200601</creationdate><title>Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation</title><author>Li, Dongfang ; Niu, Fuzhou ; Li, Junyang ; Li, Xiaojian ; Sun, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-26718aad863a46a589f82a8f855ed9b78cb011a496fe17f46b917131e2e6ab6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> in vivo</tex-math> </inline-formula> </named-content> experiments]]></topic><topic>Actuation</topic><topic>Biomedical materials</topic><topic>Cerebrospinal fluid</topic><topic>Coils</topic><topic>Core shape design of electromagnetic coils</topic><topic>Design</topic><topic>Electromagnetics</topic><topic>Finite element method</topic><topic>Iron</topic><topic>Magnetic cores</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Microparticles</topic><topic>microrobot</topic><topic>microrobot manipulation</topic><topic>Microrobots</topic><topic>Probes</topic><topic>Shape</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dongfang</creatorcontrib><creatorcontrib>Niu, Fuzhou</creatorcontrib><creatorcontrib>Li, Junyang</creatorcontrib><creatorcontrib>Li, Xiaojian</creatorcontrib><creatorcontrib>Sun, Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Dongfang</au><au>Niu, Fuzhou</au><au>Li, Junyang</au><au>Li, Xiaojian</au><au>Sun, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>67</volume><issue>6</issue><spage>4700</spage><epage>4710</epage><pages>4700-4710</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Electromagnetic-based actuation is receiving increasing attention for driving microparticles, particularly for in vivo biomedical applications. In this article, we present a core shape design for electromagnetic coils to develop a magnetic gradient field-based actuation system that can enable microrobotic manipulation. Based on the mathematical model using the finite-element method, the shape of the iron core and the size of the probe are optimized, aiming to increase the gradient at the focused area. A thin disc is also attached to the end of the iron core for reducing the waste of magnetic field energy. Through this design, the magnetic field generated by the electromagnetic actuation system can be considerably enhanced to propel microrobots in the in vivo environments. The designed system is tested in different in vitro environments, including pure water, artificial cerebrospinal fluid, mouse blood, and a special environment with an extremely high viscosity coefficient. The system is also tested for driving microrobots in an in vivo environment, namely, zebrafish yolk. Experimental results effectively demonstrate the capacity of the designed platform in manipulating microrobots for in vitro and in vivo applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2019.2928283</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6967-7146</orcidid><orcidid>https://orcid.org/0000-0002-1847-4920</orcidid><orcidid>https://orcid.org/0000-0003-3945-4037</orcidid><orcidid>https://orcid.org/0000-0002-3175-7810</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2020-06, Vol.67 (6), p.4700-4710 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2358910888 |
source | IEEE Electronic Library (IEL) |
subjects | <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> in vivo</tex-math> </inline-formula> </named-content> experiments Actuation Biomedical materials Cerebrospinal fluid Coils Core shape design of electromagnetic coils Design Electromagnetics Finite element method Iron Magnetic cores Magnetic fields Mathematical analysis Microparticles microrobot microrobot manipulation Microrobots Probes Shape Zebrafish |
title | Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient-Enhanced%20Electromagnetic%20Actuation%20System%20With%20a%20New%20Core%20Shape%20Design%20for%20Microrobot%20Manipulation&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Li,%20Dongfang&rft.date=2020-06-01&rft.volume=67&rft.issue=6&rft.spage=4700&rft.epage=4710&rft.pages=4700-4710&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2019.2928283&rft_dat=%3Cproquest_RIE%3E2358910888%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358910888&rft_id=info:pmid/&rft_ieee_id=8768330&rfr_iscdi=true |