Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems
We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the...
Gespeichert in:
Veröffentlicht in: | Regular & chaotic dynamics 2020, Vol.25 (1), p.33-39 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Regular & chaotic dynamics |
container_volume | 25 |
creator | Sachkov, Yuri L. |
description | We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented. |
doi_str_mv | 10.1134/S1560354720010050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2358711585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358711585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-18b2514a3ef4d72941cfd1e30bdf4f5a115e4ce0c54cd892f1256bcf6cf097ce3</originalsourceid><addsrcrecordid>eNp1UF1LxDAQDKLgefoDfAv4XM3mox9vyuGpcOBB9bm06UZ69JqatOL9e1MqKIhPs8zOzLJDyCWwawAhb3JQMRNKJpwxYEyxI7KYqGjijn_Np-TM-10QqTRhC3K7RdfYutF0ZbvB2dbTpqP5gD3lAVyjh_Yw7T7wk-ZjFa2bzrfo6NbZqsW9Pycnpmw9Xnzjkryu719Wj9Hm-eFpdbeJtIB4iCCtuAJZCjSyTngmQZsaULCqNtKoEkCh1Mi0krpOM26Aq7jSJtaGZYlGsSRXc27v7PuIfih2dnRdOFlwEX4JAakKKphV2lnvHZqid82-dIcCWDEVVfwpKnj47PFB272h-0n-3_QFBg9o6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358711585</pqid></control><display><type>article</type><title>Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sachkov, Yuri L.</creator><creatorcontrib>Sachkov, Yuri L.</creatorcontrib><description>We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.</description><identifier>ISSN: 1560-3547</identifier><identifier>EISSN: 1560-3547</identifier><identifier>EISSN: 1468-4845</identifier><identifier>DOI: 10.1134/S1560354720010050</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Dynamical Systems and Ergodic Theory ; Lie groups ; Mathematics ; Mathematics and Statistics ; Time optimal control</subject><ispartof>Regular & chaotic dynamics, 2020, Vol.25 (1), p.33-39</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>2020© Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-18b2514a3ef4d72941cfd1e30bdf4f5a115e4ce0c54cd892f1256bcf6cf097ce3</citedby><cites>FETCH-LOGICAL-c316t-18b2514a3ef4d72941cfd1e30bdf4f5a115e4ce0c54cd892f1256bcf6cf097ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1560354720010050$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1560354720010050$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sachkov, Yuri L.</creatorcontrib><title>Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems</title><title>Regular & chaotic dynamics</title><addtitle>Regul. Chaot. Dyn</addtitle><description>We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.</description><subject>Dynamical Systems and Ergodic Theory</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Time optimal control</subject><issn>1560-3547</issn><issn>1560-3547</issn><issn>1468-4845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LxDAQDKLgefoDfAv4XM3mox9vyuGpcOBB9bm06UZ69JqatOL9e1MqKIhPs8zOzLJDyCWwawAhb3JQMRNKJpwxYEyxI7KYqGjijn_Np-TM-10QqTRhC3K7RdfYutF0ZbvB2dbTpqP5gD3lAVyjh_Yw7T7wk-ZjFa2bzrfo6NbZqsW9Pycnpmw9Xnzjkryu719Wj9Hm-eFpdbeJtIB4iCCtuAJZCjSyTngmQZsaULCqNtKoEkCh1Mi0krpOM26Aq7jSJtaGZYlGsSRXc27v7PuIfih2dnRdOFlwEX4JAakKKphV2lnvHZqid82-dIcCWDEVVfwpKnj47PFB272h-0n-3_QFBg9o6g</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sachkov, Yuri L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems</title><author>Sachkov, Yuri L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-18b2514a3ef4d72941cfd1e30bdf4f5a115e4ce0c54cd892f1256bcf6cf097ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dynamical Systems and Ergodic Theory</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Time optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sachkov, Yuri L.</creatorcontrib><collection>CrossRef</collection><jtitle>Regular & chaotic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sachkov, Yuri L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems</atitle><jtitle>Regular & chaotic dynamics</jtitle><stitle>Regul. Chaot. Dyn</stitle><date>2020</date><risdate>2020</risdate><volume>25</volume><issue>1</issue><spage>33</spage><epage>39</epage><pages>33-39</pages><issn>1560-3547</issn><eissn>1560-3547</eissn><eissn>1468-4845</eissn><abstract>We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1560354720010050</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1560-3547 |
ispartof | Regular & chaotic dynamics, 2020, Vol.25 (1), p.33-39 |
issn | 1560-3547 1560-3547 1468-4845 |
language | eng |
recordid | cdi_proquest_journals_2358711585 |
source | SpringerLink Journals - AutoHoldings |
subjects | Dynamical Systems and Ergodic Theory Lie groups Mathematics Mathematics and Statistics Time optimal control |
title | Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Controls%20in%20Step%202%20Strictly%20Convex%20Sub-Finsler%20Problems&rft.jtitle=Regular%20&%20chaotic%20dynamics&rft.au=Sachkov,%20Yuri%20L.&rft.date=2020&rft.volume=25&rft.issue=1&rft.spage=33&rft.epage=39&rft.pages=33-39&rft.issn=1560-3547&rft.eissn=1560-3547&rft_id=info:doi/10.1134/S1560354720010050&rft_dat=%3Cproquest_cross%3E2358711585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358711585&rft_id=info:pmid/&rfr_iscdi=true |