Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems

We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2020, Vol.25 (1), p.33-39
1. Verfasser: Sachkov, Yuri L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 33
container_title Regular & chaotic dynamics
container_volume 25
creator Sachkov, Yuri L.
description We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.
doi_str_mv 10.1134/S1560354720010050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2358711585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358711585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-18b2514a3ef4d72941cfd1e30bdf4f5a115e4ce0c54cd892f1256bcf6cf097ce3</originalsourceid><addsrcrecordid>eNp1UF1LxDAQDKLgefoDfAv4XM3mox9vyuGpcOBB9bm06UZ69JqatOL9e1MqKIhPs8zOzLJDyCWwawAhb3JQMRNKJpwxYEyxI7KYqGjijn_Np-TM-10QqTRhC3K7RdfYutF0ZbvB2dbTpqP5gD3lAVyjh_Yw7T7wk-ZjFa2bzrfo6NbZqsW9Pycnpmw9Xnzjkryu719Wj9Hm-eFpdbeJtIB4iCCtuAJZCjSyTngmQZsaULCqNtKoEkCh1Mi0krpOM26Aq7jSJtaGZYlGsSRXc27v7PuIfih2dnRdOFlwEX4JAakKKphV2lnvHZqid82-dIcCWDEVVfwpKnj47PFB272h-0n-3_QFBg9o6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358711585</pqid></control><display><type>article</type><title>Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sachkov, Yuri L.</creator><creatorcontrib>Sachkov, Yuri L.</creatorcontrib><description>We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.</description><identifier>ISSN: 1560-3547</identifier><identifier>EISSN: 1560-3547</identifier><identifier>EISSN: 1468-4845</identifier><identifier>DOI: 10.1134/S1560354720010050</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Dynamical Systems and Ergodic Theory ; Lie groups ; Mathematics ; Mathematics and Statistics ; Time optimal control</subject><ispartof>Regular &amp; chaotic dynamics, 2020, Vol.25 (1), p.33-39</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>2020© Pleiades Publishing, Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-18b2514a3ef4d72941cfd1e30bdf4f5a115e4ce0c54cd892f1256bcf6cf097ce3</citedby><cites>FETCH-LOGICAL-c316t-18b2514a3ef4d72941cfd1e30bdf4f5a115e4ce0c54cd892f1256bcf6cf097ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1560354720010050$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1560354720010050$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sachkov, Yuri L.</creatorcontrib><title>Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems</title><title>Regular &amp; chaotic dynamics</title><addtitle>Regul. Chaot. Dyn</addtitle><description>We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.</description><subject>Dynamical Systems and Ergodic Theory</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Time optimal control</subject><issn>1560-3547</issn><issn>1560-3547</issn><issn>1468-4845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LxDAQDKLgefoDfAv4XM3mox9vyuGpcOBB9bm06UZ69JqatOL9e1MqKIhPs8zOzLJDyCWwawAhb3JQMRNKJpwxYEyxI7KYqGjijn_Np-TM-10QqTRhC3K7RdfYutF0ZbvB2dbTpqP5gD3lAVyjh_Yw7T7wk-ZjFa2bzrfo6NbZqsW9Pycnpmw9Xnzjkryu719Wj9Hm-eFpdbeJtIB4iCCtuAJZCjSyTngmQZsaULCqNtKoEkCh1Mi0krpOM26Aq7jSJtaGZYlGsSRXc27v7PuIfih2dnRdOFlwEX4JAakKKphV2lnvHZqid82-dIcCWDEVVfwpKnj47PFB272h-0n-3_QFBg9o6g</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sachkov, Yuri L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems</title><author>Sachkov, Yuri L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-18b2514a3ef4d72941cfd1e30bdf4f5a115e4ce0c54cd892f1256bcf6cf097ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dynamical Systems and Ergodic Theory</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Time optimal control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sachkov, Yuri L.</creatorcontrib><collection>CrossRef</collection><jtitle>Regular &amp; chaotic dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sachkov, Yuri L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems</atitle><jtitle>Regular &amp; chaotic dynamics</jtitle><stitle>Regul. Chaot. Dyn</stitle><date>2020</date><risdate>2020</risdate><volume>25</volume><issue>1</issue><spage>33</spage><epage>39</epage><pages>33-39</pages><issn>1560-3547</issn><eissn>1560-3547</eissn><eissn>1468-4845</eissn><abstract>We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1560354720010050</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1560-3547
ispartof Regular & chaotic dynamics, 2020, Vol.25 (1), p.33-39
issn 1560-3547
1560-3547
1468-4845
language eng
recordid cdi_proquest_journals_2358711585
source SpringerLink Journals - AutoHoldings
subjects Dynamical Systems and Ergodic Theory
Lie groups
Mathematics
Mathematics and Statistics
Time optimal control
title Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Controls%20in%20Step%202%20Strictly%20Convex%20Sub-Finsler%20Problems&rft.jtitle=Regular%20&%20chaotic%20dynamics&rft.au=Sachkov,%20Yuri%20L.&rft.date=2020&rft.volume=25&rft.issue=1&rft.spage=33&rft.epage=39&rft.pages=33-39&rft.issn=1560-3547&rft.eissn=1560-3547&rft_id=info:doi/10.1134/S1560354720010050&rft_dat=%3Cproquest_cross%3E2358711585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358711585&rft_id=info:pmid/&rfr_iscdi=true