Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models
Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor var...
Gespeichert in:
Veröffentlicht in: | Journal of computational and graphical statistics 2004-06, Vol.13 (2), p.362-382 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 382 |
---|---|
container_issue | 2 |
container_start_page | 362 |
container_title | Journal of computational and graphical statistics |
container_volume | 13 |
creator | Nott, David J Leonte, Daniela |
description | Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data. |
doi_str_mv | 10.1198/1061860043425 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_235847889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1391181</jstor_id><sourcerecordid>1391181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-4b720418c126077b2dba4c6b25fdb1c69e484f9721185bcafe26a6ee197a81273</originalsourceid><addsrcrecordid>eNptkE1LAzEQhhdRsFaP3jwE76uZ7EeyRy1ahRYPVa8hm53VlN2kJluk_npTVhDB0ww8D-8Mb5KcA70CqMQ10BJESWme5aw4SCZQZDxlHIrDuEeW7uFxchLCmlIKZcUnyXKl-k1n7BtZ6XfsMZDWeXKrdhiMsuRVeaPqDskKO9SDcZYYS-Zo0avOfGFDFsai8mTpGuzCaXLUqi7g2c-cJi_3d8-zh3TxNH-c3SxSnWVsSPOaM5qD0MBKynnNmlrluqxZ0TY16LLCXORtxRmAKGqtWmSlKhGh4koA49k0uRxzN959bDEMcu223saTkmWFyLkQVZTSUdLeheCxlRtveuV3EqjcFyb_FBb9i9Ffh8H5Xzmr4hsQsRixsbGiXn063zVyULvO-dYrq02Q2f_J338od4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235847889</pqid></control><display><type>article</type><title>Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Nott, David J ; Leonte, Daniela</creator><creatorcontrib>Nott, David J ; Leonte, Daniela</creatorcontrib><description>Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1198/1061860043425</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Algorithms ; Auxiliary variables ; Bayesian analysis ; Bayesian variable selection ; Feature selection ; Generalized linear model ; Generalized linear models ; Ising model ; Linear models ; Linear programming ; Markov analysis ; Markov chain Monte Carlo ; Markov chains ; Mathematical independent variables ; Mathematical models ; Modeling ; Monte Carlo simulation ; Parametric models ; Probabilities ; Reversible jump ; Sampling ; Sampling distributions ; Standard error ; Swendsen-wang algorithm</subject><ispartof>Journal of computational and graphical statistics, 2004-06, Vol.13 (2), p.362-382</ispartof><rights>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2004</rights><rights>Copyright 2004 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><rights>Copyright American Statistical Association Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-4b720418c126077b2dba4c6b25fdb1c69e484f9721185bcafe26a6ee197a81273</citedby><cites>FETCH-LOGICAL-c332t-4b720418c126077b2dba4c6b25fdb1c69e484f9721185bcafe26a6ee197a81273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1391181$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1391181$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Nott, David J</creatorcontrib><creatorcontrib>Leonte, Daniela</creatorcontrib><title>Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models</title><title>Journal of computational and graphical statistics</title><description>Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.</description><subject>Algorithms</subject><subject>Auxiliary variables</subject><subject>Bayesian analysis</subject><subject>Bayesian variable selection</subject><subject>Feature selection</subject><subject>Generalized linear model</subject><subject>Generalized linear models</subject><subject>Ising model</subject><subject>Linear models</subject><subject>Linear programming</subject><subject>Markov analysis</subject><subject>Markov chain Monte Carlo</subject><subject>Markov chains</subject><subject>Mathematical independent variables</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Parametric models</subject><subject>Probabilities</subject><subject>Reversible jump</subject><subject>Sampling</subject><subject>Sampling distributions</subject><subject>Standard error</subject><subject>Swendsen-wang algorithm</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhhdRsFaP3jwE76uZ7EeyRy1ahRYPVa8hm53VlN2kJluk_npTVhDB0ww8D-8Mb5KcA70CqMQ10BJESWme5aw4SCZQZDxlHIrDuEeW7uFxchLCmlIKZcUnyXKl-k1n7BtZ6XfsMZDWeXKrdhiMsuRVeaPqDskKO9SDcZYYS-Zo0avOfGFDFsai8mTpGuzCaXLUqi7g2c-cJi_3d8-zh3TxNH-c3SxSnWVsSPOaM5qD0MBKynnNmlrluqxZ0TY16LLCXORtxRmAKGqtWmSlKhGh4koA49k0uRxzN959bDEMcu223saTkmWFyLkQVZTSUdLeheCxlRtveuV3EqjcFyb_FBb9i9Ffh8H5Xzmr4hsQsRixsbGiXn063zVyULvO-dYrq02Q2f_J338od4k</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Nott, David J</creator><creator>Leonte, Daniela</creator><general>Taylor & Francis</general><general>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20040601</creationdate><title>Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models</title><author>Nott, David J ; Leonte, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-4b720418c126077b2dba4c6b25fdb1c69e484f9721185bcafe26a6ee197a81273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Auxiliary variables</topic><topic>Bayesian analysis</topic><topic>Bayesian variable selection</topic><topic>Feature selection</topic><topic>Generalized linear model</topic><topic>Generalized linear models</topic><topic>Ising model</topic><topic>Linear models</topic><topic>Linear programming</topic><topic>Markov analysis</topic><topic>Markov chain Monte Carlo</topic><topic>Markov chains</topic><topic>Mathematical independent variables</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Parametric models</topic><topic>Probabilities</topic><topic>Reversible jump</topic><topic>Sampling</topic><topic>Sampling distributions</topic><topic>Standard error</topic><topic>Swendsen-wang algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nott, David J</creatorcontrib><creatorcontrib>Leonte, Daniela</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nott, David J</au><au>Leonte, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>13</volume><issue>2</issue><spage>362</spage><epage>382</epage><pages>362-382</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1198/1061860043425</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-8600 |
ispartof | Journal of computational and graphical statistics, 2004-06, Vol.13 (2), p.362-382 |
issn | 1061-8600 1537-2715 |
language | eng |
recordid | cdi_proquest_journals_235847889 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algorithms Auxiliary variables Bayesian analysis Bayesian variable selection Feature selection Generalized linear model Generalized linear models Ising model Linear models Linear programming Markov analysis Markov chain Monte Carlo Markov chains Mathematical independent variables Mathematical models Modeling Monte Carlo simulation Parametric models Probabilities Reversible jump Sampling Sampling distributions Standard error Swendsen-wang algorithm |
title | Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20Schemes%20for%20Bayesian%20Variable%20Selection%20in%20Generalized%20Linear%20Models&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Nott,%20David%20J&rft.date=2004-06-01&rft.volume=13&rft.issue=2&rft.spage=362&rft.epage=382&rft.pages=362-382&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1198/1061860043425&rft_dat=%3Cjstor_proqu%3E1391181%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=235847889&rft_id=info:pmid/&rft_jstor_id=1391181&rfr_iscdi=true |