Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models

Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics 2004-06, Vol.13 (2), p.362-382
Hauptverfasser: Nott, David J, Leonte, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 2
container_start_page 362
container_title Journal of computational and graphical statistics
container_volume 13
creator Nott, David J
Leonte, Daniela
description Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.
doi_str_mv 10.1198/1061860043425
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_235847889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1391181</jstor_id><sourcerecordid>1391181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-4b720418c126077b2dba4c6b25fdb1c69e484f9721185bcafe26a6ee197a81273</originalsourceid><addsrcrecordid>eNptkE1LAzEQhhdRsFaP3jwE76uZ7EeyRy1ahRYPVa8hm53VlN2kJluk_npTVhDB0ww8D-8Mb5KcA70CqMQ10BJESWme5aw4SCZQZDxlHIrDuEeW7uFxchLCmlIKZcUnyXKl-k1n7BtZ6XfsMZDWeXKrdhiMsuRVeaPqDskKO9SDcZYYS-Zo0avOfGFDFsai8mTpGuzCaXLUqi7g2c-cJi_3d8-zh3TxNH-c3SxSnWVsSPOaM5qD0MBKynnNmlrluqxZ0TY16LLCXORtxRmAKGqtWmSlKhGh4koA49k0uRxzN959bDEMcu223saTkmWFyLkQVZTSUdLeheCxlRtveuV3EqjcFyb_FBb9i9Ffh8H5Xzmr4hsQsRixsbGiXn063zVyULvO-dYrq02Q2f_J338od4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235847889</pqid></control><display><type>article</type><title>Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Nott, David J ; Leonte, Daniela</creator><creatorcontrib>Nott, David J ; Leonte, Daniela</creatorcontrib><description>Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.</description><identifier>ISSN: 1061-8600</identifier><identifier>EISSN: 1537-2715</identifier><identifier>DOI: 10.1198/1061860043425</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Algorithms ; Auxiliary variables ; Bayesian analysis ; Bayesian variable selection ; Feature selection ; Generalized linear model ; Generalized linear models ; Ising model ; Linear models ; Linear programming ; Markov analysis ; Markov chain Monte Carlo ; Markov chains ; Mathematical independent variables ; Mathematical models ; Modeling ; Monte Carlo simulation ; Parametric models ; Probabilities ; Reversible jump ; Sampling ; Sampling distributions ; Standard error ; Swendsen-wang algorithm</subject><ispartof>Journal of computational and graphical statistics, 2004-06, Vol.13 (2), p.362-382</ispartof><rights>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2004</rights><rights>Copyright 2004 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</rights><rights>Copyright American Statistical Association Jun 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-4b720418c126077b2dba4c6b25fdb1c69e484f9721185bcafe26a6ee197a81273</citedby><cites>FETCH-LOGICAL-c332t-4b720418c126077b2dba4c6b25fdb1c69e484f9721185bcafe26a6ee197a81273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1391181$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1391181$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Nott, David J</creatorcontrib><creatorcontrib>Leonte, Daniela</creatorcontrib><title>Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models</title><title>Journal of computational and graphical statistics</title><description>Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.</description><subject>Algorithms</subject><subject>Auxiliary variables</subject><subject>Bayesian analysis</subject><subject>Bayesian variable selection</subject><subject>Feature selection</subject><subject>Generalized linear model</subject><subject>Generalized linear models</subject><subject>Ising model</subject><subject>Linear models</subject><subject>Linear programming</subject><subject>Markov analysis</subject><subject>Markov chain Monte Carlo</subject><subject>Markov chains</subject><subject>Mathematical independent variables</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Monte Carlo simulation</subject><subject>Parametric models</subject><subject>Probabilities</subject><subject>Reversible jump</subject><subject>Sampling</subject><subject>Sampling distributions</subject><subject>Standard error</subject><subject>Swendsen-wang algorithm</subject><issn>1061-8600</issn><issn>1537-2715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhhdRsFaP3jwE76uZ7EeyRy1ahRYPVa8hm53VlN2kJluk_npTVhDB0ww8D-8Mb5KcA70CqMQ10BJESWme5aw4SCZQZDxlHIrDuEeW7uFxchLCmlIKZcUnyXKl-k1n7BtZ6XfsMZDWeXKrdhiMsuRVeaPqDskKO9SDcZYYS-Zo0avOfGFDFsai8mTpGuzCaXLUqi7g2c-cJi_3d8-zh3TxNH-c3SxSnWVsSPOaM5qD0MBKynnNmlrluqxZ0TY16LLCXORtxRmAKGqtWmSlKhGh4koA49k0uRxzN959bDEMcu223saTkmWFyLkQVZTSUdLeheCxlRtveuV3EqjcFyb_FBb9i9Ffh8H5Xzmr4hsQsRixsbGiXn063zVyULvO-dYrq02Q2f_J338od4k</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Nott, David J</creator><creator>Leonte, Daniela</creator><general>Taylor &amp; Francis</general><general>American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20040601</creationdate><title>Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models</title><author>Nott, David J ; Leonte, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-4b720418c126077b2dba4c6b25fdb1c69e484f9721185bcafe26a6ee197a81273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Auxiliary variables</topic><topic>Bayesian analysis</topic><topic>Bayesian variable selection</topic><topic>Feature selection</topic><topic>Generalized linear model</topic><topic>Generalized linear models</topic><topic>Ising model</topic><topic>Linear models</topic><topic>Linear programming</topic><topic>Markov analysis</topic><topic>Markov chain Monte Carlo</topic><topic>Markov chains</topic><topic>Mathematical independent variables</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Monte Carlo simulation</topic><topic>Parametric models</topic><topic>Probabilities</topic><topic>Reversible jump</topic><topic>Sampling</topic><topic>Sampling distributions</topic><topic>Standard error</topic><topic>Swendsen-wang algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nott, David J</creatorcontrib><creatorcontrib>Leonte, Daniela</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of computational and graphical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nott, David J</au><au>Leonte, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models</atitle><jtitle>Journal of computational and graphical statistics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>13</volume><issue>2</issue><spage>362</spage><epage>382</epage><pages>362-382</pages><issn>1061-8600</issn><eissn>1537-2715</eissn><abstract>Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1198/1061860043425</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-8600
ispartof Journal of computational and graphical statistics, 2004-06, Vol.13 (2), p.362-382
issn 1061-8600
1537-2715
language eng
recordid cdi_proquest_journals_235847889
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algorithms
Auxiliary variables
Bayesian analysis
Bayesian variable selection
Feature selection
Generalized linear model
Generalized linear models
Ising model
Linear models
Linear programming
Markov analysis
Markov chain Monte Carlo
Markov chains
Mathematical independent variables
Mathematical models
Modeling
Monte Carlo simulation
Parametric models
Probabilities
Reversible jump
Sampling
Sampling distributions
Standard error
Swendsen-wang algorithm
title Sampling Schemes for Bayesian Variable Selection in Generalized Linear Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20Schemes%20for%20Bayesian%20Variable%20Selection%20in%20Generalized%20Linear%20Models&rft.jtitle=Journal%20of%20computational%20and%20graphical%20statistics&rft.au=Nott,%20David%20J&rft.date=2004-06-01&rft.volume=13&rft.issue=2&rft.spage=362&rft.epage=382&rft.pages=362-382&rft.issn=1061-8600&rft.eissn=1537-2715&rft_id=info:doi/10.1198/1061860043425&rft_dat=%3Cjstor_proqu%3E1391181%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=235847889&rft_id=info:pmid/&rft_jstor_id=1391181&rfr_iscdi=true