Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna
Lithium intercalation compounds, such as the complex metal oxide, lithium nickel manganese cobalt oxide (LiNi x Mn y Co 1−x−y O 2 , herein referred to as NMC), have demonstrated their utility as energy storage materials. In response to recent concerns about the global supply of cobalt, industrially...
Gespeichert in:
Veröffentlicht in: | Environmental science. Nano 2020-02, Vol.7 (2), p.571-587 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 2 |
container_start_page | 571 |
container_title | Environmental science. Nano |
container_volume | 7 |
creator | Buchman, Joseph T. Bennett, Evan A. Wang, Chenyu Abbaspour Tamijani, Ali Bennett, Joseph W. Hudson, Blake G. Green, Curtis M. Clement, Peter L. Zhi, Bo Henke, Austin H. Laudadio, Elizabeth D. Mason, Sara E. Hamers, Robert J. Klaper, Rebecca D. Haynes, Christy L. |
description | Lithium intercalation compounds, such as the complex metal oxide, lithium nickel manganese cobalt oxide (LiNi
x
Mn
y
Co
1−x−y
O
2
, herein referred to as NMC), have demonstrated their utility as energy storage materials. In response to recent concerns about the global supply of cobalt, industrially synthesized NMCs are shifting toward using NMC compositions with enriched nickel content. However, nickel is one of the more toxic components of NMC materials, meriting investigation of the toxicity of these materials on environmentally relevant organisms. Herein, the toxicity of both nanoscale and microscale Ni-enriched NMCs to the bacterium,
Shewanella oneidensis
MR-1, and the zooplankton,
Daphnia magna
, was assessed. Unexpectedly, for the bacteria, all NMC materials exhibited similar toxicity when used at equal surface area-based doses, despite the different nickel content in each. Material dissolution to toxic species, namely nickel and cobalt ions, was therefore modelled using a combined density functional theory and thermodynamics approach, which showed an increase in material stability due to the Ni-enriched material containing nickel with an oxidation state >2. The increased stability of this material means that similar dissolution is expected between Ni-enriched NMC and equistoichiometric NMC, which is what was found in experiments. For
S. oneidensis
, the toxicity of the released ions recapitulated toxicity of NMC nanoparticles. For
D. magna
, nickel enrichment increased the observed toxicity of NMC, but this toxicity was not due to ion release. Association of the NMC was observed with both
S. oneidensis
and
D. magna.
This work demonstrates that for organisms where the major mode of toxicity is based on ion release, including more nickel in NMC does not impact toxicity due to increased particle stability; however, for organisms where the core composition dictates the toxicity, including more nickel in the redesign strategy may lead to greater toxicity due to nanoparticle-specific impacts on the organism. |
doi_str_mv | 10.1039/C9EN01074B |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2358309900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358309900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-aab058211ea113976c3b80192199df1142ae06eddb20c11cedfbea71e963467e3</originalsourceid><addsrcrecordid>eNpFkctOwzAQRSMEEqiw4QsssUOkzMRNUi-hlIdEi8RjHTnOpBhSu9hOBb_FF2Leq7kanbl3pJsk-whDBC6OJ2I6B4RydLqR7GSQYzrGAjf_dM63kz3vnwAAMct5Ue4k73OtnqljZJxWj0sygdmWGXoN6YIMORm0NWw-mzAjjV3KQE7LzjPZReXZ74L5IGvd6fB2xJTsvTYL1keXFalADWu097brv7xqepRrbR2TpmG29uTWkQj2Vat4HgW7GzJrSDdkvPZsdpviF3s2jHELI3eTrTa-QHs_c5A8nE_vJ5fp9c3F1eTkOlUcIKRS1pCPM0SSiFyUheL1GFBkKETTIo4ySVBQ09QZKERFTVuTLJFEwUdFSXyQHHz7rpx96cmH6sn2zsTIKuP5mIMQAJE6_KaUs947aquV00vp3iqE6rOW6r8W_gE7k4I4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358309900</pqid></control><display><type>article</type><title>Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Buchman, Joseph T. ; Bennett, Evan A. ; Wang, Chenyu ; Abbaspour Tamijani, Ali ; Bennett, Joseph W. ; Hudson, Blake G. ; Green, Curtis M. ; Clement, Peter L. ; Zhi, Bo ; Henke, Austin H. ; Laudadio, Elizabeth D. ; Mason, Sara E. ; Hamers, Robert J. ; Klaper, Rebecca D. ; Haynes, Christy L.</creator><creatorcontrib>Buchman, Joseph T. ; Bennett, Evan A. ; Wang, Chenyu ; Abbaspour Tamijani, Ali ; Bennett, Joseph W. ; Hudson, Blake G. ; Green, Curtis M. ; Clement, Peter L. ; Zhi, Bo ; Henke, Austin H. ; Laudadio, Elizabeth D. ; Mason, Sara E. ; Hamers, Robert J. ; Klaper, Rebecca D. ; Haynes, Christy L.</creatorcontrib><description>Lithium intercalation compounds, such as the complex metal oxide, lithium nickel manganese cobalt oxide (LiNi
x
Mn
y
Co
1−x−y
O
2
, herein referred to as NMC), have demonstrated their utility as energy storage materials. In response to recent concerns about the global supply of cobalt, industrially synthesized NMCs are shifting toward using NMC compositions with enriched nickel content. However, nickel is one of the more toxic components of NMC materials, meriting investigation of the toxicity of these materials on environmentally relevant organisms. Herein, the toxicity of both nanoscale and microscale Ni-enriched NMCs to the bacterium,
Shewanella oneidensis
MR-1, and the zooplankton,
Daphnia magna
, was assessed. Unexpectedly, for the bacteria, all NMC materials exhibited similar toxicity when used at equal surface area-based doses, despite the different nickel content in each. Material dissolution to toxic species, namely nickel and cobalt ions, was therefore modelled using a combined density functional theory and thermodynamics approach, which showed an increase in material stability due to the Ni-enriched material containing nickel with an oxidation state >2. The increased stability of this material means that similar dissolution is expected between Ni-enriched NMC and equistoichiometric NMC, which is what was found in experiments. For
S. oneidensis
, the toxicity of the released ions recapitulated toxicity of NMC nanoparticles. For
D. magna
, nickel enrichment increased the observed toxicity of NMC, but this toxicity was not due to ion release. Association of the NMC was observed with both
S. oneidensis
and
D. magna.
This work demonstrates that for organisms where the major mode of toxicity is based on ion release, including more nickel in NMC does not impact toxicity due to increased particle stability; however, for organisms where the core composition dictates the toxicity, including more nickel in the redesign strategy may lead to greater toxicity due to nanoparticle-specific impacts on the organism.</description><identifier>ISSN: 2051-8153</identifier><identifier>EISSN: 2051-8161</identifier><identifier>DOI: 10.1039/C9EN01074B</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bacteria ; Cobalt ; Cobalt compounds ; Cobalt oxides ; Composition ; Computer applications ; Coordination compounds ; Density functional theory ; Dissolution ; Dissolving ; Electron micrographs ; Energy storage ; Enrichment ; Freshwater crustaceans ; Heavy metals ; Intercalation compounds ; Ions ; Lithium ; Manganese ; Metal oxides ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Nickel ; Organisms ; Oxidation ; Redesign ; Stability ; Stoichiometry ; Surface area ; Toxicity ; Valence ; X-ray diffraction ; Zeta potential ; Zooplankton</subject><ispartof>Environmental science. Nano, 2020-02, Vol.7 (2), p.571-587</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-aab058211ea113976c3b80192199df1142ae06eddb20c11cedfbea71e963467e3</citedby><cites>FETCH-LOGICAL-c300t-aab058211ea113976c3b80192199df1142ae06eddb20c11cedfbea71e963467e3</cites><orcidid>0000-0001-5827-8513 ; 0000-0003-3821-9625 ; 0000-0002-1918-5012 ; 0000-0003-2959-7253 ; 0000-0002-5420-5867 ; 0000-0002-9239-6916 ; 0000-0003-4867-0487 ; 0000-0002-7971-4772 ; 0000-0001-7236-7408 ; 0000-0002-3522-1722 ; 0000-0003-1515-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Buchman, Joseph T.</creatorcontrib><creatorcontrib>Bennett, Evan A.</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><creatorcontrib>Abbaspour Tamijani, Ali</creatorcontrib><creatorcontrib>Bennett, Joseph W.</creatorcontrib><creatorcontrib>Hudson, Blake G.</creatorcontrib><creatorcontrib>Green, Curtis M.</creatorcontrib><creatorcontrib>Clement, Peter L.</creatorcontrib><creatorcontrib>Zhi, Bo</creatorcontrib><creatorcontrib>Henke, Austin H.</creatorcontrib><creatorcontrib>Laudadio, Elizabeth D.</creatorcontrib><creatorcontrib>Mason, Sara E.</creatorcontrib><creatorcontrib>Hamers, Robert J.</creatorcontrib><creatorcontrib>Klaper, Rebecca D.</creatorcontrib><creatorcontrib>Haynes, Christy L.</creatorcontrib><title>Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna</title><title>Environmental science. Nano</title><description>Lithium intercalation compounds, such as the complex metal oxide, lithium nickel manganese cobalt oxide (LiNi
x
Mn
y
Co
1−x−y
O
2
, herein referred to as NMC), have demonstrated their utility as energy storage materials. In response to recent concerns about the global supply of cobalt, industrially synthesized NMCs are shifting toward using NMC compositions with enriched nickel content. However, nickel is one of the more toxic components of NMC materials, meriting investigation of the toxicity of these materials on environmentally relevant organisms. Herein, the toxicity of both nanoscale and microscale Ni-enriched NMCs to the bacterium,
Shewanella oneidensis
MR-1, and the zooplankton,
Daphnia magna
, was assessed. Unexpectedly, for the bacteria, all NMC materials exhibited similar toxicity when used at equal surface area-based doses, despite the different nickel content in each. Material dissolution to toxic species, namely nickel and cobalt ions, was therefore modelled using a combined density functional theory and thermodynamics approach, which showed an increase in material stability due to the Ni-enriched material containing nickel with an oxidation state >2. The increased stability of this material means that similar dissolution is expected between Ni-enriched NMC and equistoichiometric NMC, which is what was found in experiments. For
S. oneidensis
, the toxicity of the released ions recapitulated toxicity of NMC nanoparticles. For
D. magna
, nickel enrichment increased the observed toxicity of NMC, but this toxicity was not due to ion release. Association of the NMC was observed with both
S. oneidensis
and
D. magna.
This work demonstrates that for organisms where the major mode of toxicity is based on ion release, including more nickel in NMC does not impact toxicity due to increased particle stability; however, for organisms where the core composition dictates the toxicity, including more nickel in the redesign strategy may lead to greater toxicity due to nanoparticle-specific impacts on the organism.</description><subject>Bacteria</subject><subject>Cobalt</subject><subject>Cobalt compounds</subject><subject>Cobalt oxides</subject><subject>Composition</subject><subject>Computer applications</subject><subject>Coordination compounds</subject><subject>Density functional theory</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Electron micrographs</subject><subject>Energy storage</subject><subject>Enrichment</subject><subject>Freshwater crustaceans</subject><subject>Heavy metals</subject><subject>Intercalation compounds</subject><subject>Ions</subject><subject>Lithium</subject><subject>Manganese</subject><subject>Metal oxides</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Organisms</subject><subject>Oxidation</subject><subject>Redesign</subject><subject>Stability</subject><subject>Stoichiometry</subject><subject>Surface area</subject><subject>Toxicity</subject><subject>Valence</subject><subject>X-ray diffraction</subject><subject>Zeta potential</subject><subject>Zooplankton</subject><issn>2051-8153</issn><issn>2051-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkctOwzAQRSMEEqiw4QsssUOkzMRNUi-hlIdEi8RjHTnOpBhSu9hOBb_FF2Leq7kanbl3pJsk-whDBC6OJ2I6B4RydLqR7GSQYzrGAjf_dM63kz3vnwAAMct5Ue4k73OtnqljZJxWj0sygdmWGXoN6YIMORm0NWw-mzAjjV3KQE7LzjPZReXZ74L5IGvd6fB2xJTsvTYL1keXFalADWu097brv7xqepRrbR2TpmG29uTWkQj2Vat4HgW7GzJrSDdkvPZsdpviF3s2jHELI3eTrTa-QHs_c5A8nE_vJ5fp9c3F1eTkOlUcIKRS1pCPM0SSiFyUheL1GFBkKETTIo4ySVBQ09QZKERFTVuTLJFEwUdFSXyQHHz7rpx96cmH6sn2zsTIKuP5mIMQAJE6_KaUs947aquV00vp3iqE6rOW6r8W_gE7k4I4</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Buchman, Joseph T.</creator><creator>Bennett, Evan A.</creator><creator>Wang, Chenyu</creator><creator>Abbaspour Tamijani, Ali</creator><creator>Bennett, Joseph W.</creator><creator>Hudson, Blake G.</creator><creator>Green, Curtis M.</creator><creator>Clement, Peter L.</creator><creator>Zhi, Bo</creator><creator>Henke, Austin H.</creator><creator>Laudadio, Elizabeth D.</creator><creator>Mason, Sara E.</creator><creator>Hamers, Robert J.</creator><creator>Klaper, Rebecca D.</creator><creator>Haynes, Christy L.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5827-8513</orcidid><orcidid>https://orcid.org/0000-0003-3821-9625</orcidid><orcidid>https://orcid.org/0000-0002-1918-5012</orcidid><orcidid>https://orcid.org/0000-0003-2959-7253</orcidid><orcidid>https://orcid.org/0000-0002-5420-5867</orcidid><orcidid>https://orcid.org/0000-0002-9239-6916</orcidid><orcidid>https://orcid.org/0000-0003-4867-0487</orcidid><orcidid>https://orcid.org/0000-0002-7971-4772</orcidid><orcidid>https://orcid.org/0000-0001-7236-7408</orcidid><orcidid>https://orcid.org/0000-0002-3522-1722</orcidid><orcidid>https://orcid.org/0000-0003-1515-6780</orcidid></search><sort><creationdate>20200201</creationdate><title>Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna</title><author>Buchman, Joseph T. ; Bennett, Evan A. ; Wang, Chenyu ; Abbaspour Tamijani, Ali ; Bennett, Joseph W. ; Hudson, Blake G. ; Green, Curtis M. ; Clement, Peter L. ; Zhi, Bo ; Henke, Austin H. ; Laudadio, Elizabeth D. ; Mason, Sara E. ; Hamers, Robert J. ; Klaper, Rebecca D. ; Haynes, Christy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-aab058211ea113976c3b80192199df1142ae06eddb20c11cedfbea71e963467e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bacteria</topic><topic>Cobalt</topic><topic>Cobalt compounds</topic><topic>Cobalt oxides</topic><topic>Composition</topic><topic>Computer applications</topic><topic>Coordination compounds</topic><topic>Density functional theory</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Electron micrographs</topic><topic>Energy storage</topic><topic>Enrichment</topic><topic>Freshwater crustaceans</topic><topic>Heavy metals</topic><topic>Intercalation compounds</topic><topic>Ions</topic><topic>Lithium</topic><topic>Manganese</topic><topic>Metal oxides</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Organisms</topic><topic>Oxidation</topic><topic>Redesign</topic><topic>Stability</topic><topic>Stoichiometry</topic><topic>Surface area</topic><topic>Toxicity</topic><topic>Valence</topic><topic>X-ray diffraction</topic><topic>Zeta potential</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchman, Joseph T.</creatorcontrib><creatorcontrib>Bennett, Evan A.</creatorcontrib><creatorcontrib>Wang, Chenyu</creatorcontrib><creatorcontrib>Abbaspour Tamijani, Ali</creatorcontrib><creatorcontrib>Bennett, Joseph W.</creatorcontrib><creatorcontrib>Hudson, Blake G.</creatorcontrib><creatorcontrib>Green, Curtis M.</creatorcontrib><creatorcontrib>Clement, Peter L.</creatorcontrib><creatorcontrib>Zhi, Bo</creatorcontrib><creatorcontrib>Henke, Austin H.</creatorcontrib><creatorcontrib>Laudadio, Elizabeth D.</creatorcontrib><creatorcontrib>Mason, Sara E.</creatorcontrib><creatorcontrib>Hamers, Robert J.</creatorcontrib><creatorcontrib>Klaper, Rebecca D.</creatorcontrib><creatorcontrib>Haynes, Christy L.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science. Nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchman, Joseph T.</au><au>Bennett, Evan A.</au><au>Wang, Chenyu</au><au>Abbaspour Tamijani, Ali</au><au>Bennett, Joseph W.</au><au>Hudson, Blake G.</au><au>Green, Curtis M.</au><au>Clement, Peter L.</au><au>Zhi, Bo</au><au>Henke, Austin H.</au><au>Laudadio, Elizabeth D.</au><au>Mason, Sara E.</au><au>Hamers, Robert J.</au><au>Klaper, Rebecca D.</au><au>Haynes, Christy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna</atitle><jtitle>Environmental science. Nano</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>7</volume><issue>2</issue><spage>571</spage><epage>587</epage><pages>571-587</pages><issn>2051-8153</issn><eissn>2051-8161</eissn><abstract>Lithium intercalation compounds, such as the complex metal oxide, lithium nickel manganese cobalt oxide (LiNi
x
Mn
y
Co
1−x−y
O
2
, herein referred to as NMC), have demonstrated their utility as energy storage materials. In response to recent concerns about the global supply of cobalt, industrially synthesized NMCs are shifting toward using NMC compositions with enriched nickel content. However, nickel is one of the more toxic components of NMC materials, meriting investigation of the toxicity of these materials on environmentally relevant organisms. Herein, the toxicity of both nanoscale and microscale Ni-enriched NMCs to the bacterium,
Shewanella oneidensis
MR-1, and the zooplankton,
Daphnia magna
, was assessed. Unexpectedly, for the bacteria, all NMC materials exhibited similar toxicity when used at equal surface area-based doses, despite the different nickel content in each. Material dissolution to toxic species, namely nickel and cobalt ions, was therefore modelled using a combined density functional theory and thermodynamics approach, which showed an increase in material stability due to the Ni-enriched material containing nickel with an oxidation state >2. The increased stability of this material means that similar dissolution is expected between Ni-enriched NMC and equistoichiometric NMC, which is what was found in experiments. For
S. oneidensis
, the toxicity of the released ions recapitulated toxicity of NMC nanoparticles. For
D. magna
, nickel enrichment increased the observed toxicity of NMC, but this toxicity was not due to ion release. Association of the NMC was observed with both
S. oneidensis
and
D. magna.
This work demonstrates that for organisms where the major mode of toxicity is based on ion release, including more nickel in NMC does not impact toxicity due to increased particle stability; however, for organisms where the core composition dictates the toxicity, including more nickel in the redesign strategy may lead to greater toxicity due to nanoparticle-specific impacts on the organism.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C9EN01074B</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5827-8513</orcidid><orcidid>https://orcid.org/0000-0003-3821-9625</orcidid><orcidid>https://orcid.org/0000-0002-1918-5012</orcidid><orcidid>https://orcid.org/0000-0003-2959-7253</orcidid><orcidid>https://orcid.org/0000-0002-5420-5867</orcidid><orcidid>https://orcid.org/0000-0002-9239-6916</orcidid><orcidid>https://orcid.org/0000-0003-4867-0487</orcidid><orcidid>https://orcid.org/0000-0002-7971-4772</orcidid><orcidid>https://orcid.org/0000-0001-7236-7408</orcidid><orcidid>https://orcid.org/0000-0002-3522-1722</orcidid><orcidid>https://orcid.org/0000-0003-1515-6780</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-8153 |
ispartof | Environmental science. Nano, 2020-02, Vol.7 (2), p.571-587 |
issn | 2051-8153 2051-8161 |
language | eng |
recordid | cdi_proquest_journals_2358309900 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Bacteria Cobalt Cobalt compounds Cobalt oxides Composition Computer applications Coordination compounds Density functional theory Dissolution Dissolving Electron micrographs Energy storage Enrichment Freshwater crustaceans Heavy metals Intercalation compounds Ions Lithium Manganese Metal oxides Nanomaterials Nanoparticles Nanotechnology Nickel Organisms Oxidation Redesign Stability Stoichiometry Surface area Toxicity Valence X-ray diffraction Zeta potential Zooplankton |
title | Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel%20enrichment%20of%20next-generation%20NMC%20nanomaterials%20alters%20material%20stability,%20causing%20unexpected%20dissolution%20behavior%20and%20observed%20toxicity%20to%20S.%20oneidensis%20MR-1%20and%20D.%20magna&rft.jtitle=Environmental%20science.%20Nano&rft.au=Buchman,%20Joseph%20T.&rft.date=2020-02-01&rft.volume=7&rft.issue=2&rft.spage=571&rft.epage=587&rft.pages=571-587&rft.issn=2051-8153&rft.eissn=2051-8161&rft_id=info:doi/10.1039/C9EN01074B&rft_dat=%3Cproquest_cross%3E2358309900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358309900&rft_id=info:pmid/&rfr_iscdi=true |