Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment

The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors will form the first large-area, relatively high-te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of instrumentation 2019-10, Vol.14 (10), p.P10009-P10009
Hauptverfasser: Rogers, F., Xiao, M., Perez, K.M., Boggs, S., Erjavec, T., Fabris, L., Fuke, H., Hailey, C.J., Kozai, M., Lowell, A., Madden, N., Manghisoni, M., McBride, S., Re, V., Riceputi, E., Saffold, N., Shimizu, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page P10009
container_issue 10
container_start_page P10009
container_title Journal of instrumentation
container_volume 14
creator Rogers, F.
Xiao, M.
Perez, K.M.
Boggs, S.
Erjavec, T.
Fabris, L.
Fuke, H.
Hailey, C.J.
Kozai, M.
Lowell, A.
Madden, N.
Manghisoni, M.
McBride, S.
Re, V.
Riceputi, E.
Saffold, N.
Shimizu, Y.
description The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors will form the first large-area, relatively high-temperature Si(Li) detector system with sensitivity to X-rays to operate at high altitude. These 10 cm-diameter, 2.5 mm-thick, 4- or 8-strip detectors provide the active area, X-ray absorption efficiency, energy resolution, and particle tracking capability necessary for the GAPS exotic-atom particle identification technique. In this paper, the detector performance is validated on the bases of X-ray energy resolution and reconstruction of cosmic minimum ionizing particle (MIP) signals. We use the established noise model for semiconductor detectors to distinguish sources of noise due to the detector from those due to signal processing electronics. We demonstrate that detectors with either 4 strips or 8 strips can provide the required ≲4 keV (FWHM) X-ray energy resolution at flight temperatures of −35 to −45ˆC, given the proper choice of signal processing electronics. Approximately 1000 8-strip detectors will be used for the first GAPS Antarctic balloon flight, scheduled for late 2021.
doi_str_mv 10.1088/1748-0221/14/10/P10009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357653385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357653385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-bac69ebc4cca0808f7323d2e769a3f5f4b4e44b592dfee09f8ace89ee1039bf03</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYsoOKd_QQK-6EPtTZO2yeMYOoWCgyn4FtL0ZnZubU0ycP_elon4dC_nHs49fFF0TeGeghAJLbiIIU1pQnlCIVlSAJAn0eTvcPpvP48uvN8AZDLjMIlUqd0aY-1Qk1VzWzZ3pMaAJnTOE9s58h47fSC-HyTX7TC4A9FtTXrtQmO2SILT5rNp16RpSfhAspgtVwS_e3TNDttwGZ1ZvfV49Tun0dvjw-v8KS5fFs_zWRkbzmmIK21yiZXhxmgQIGzBUlanWORSM5tZXnHkvMpkWltEkFZog0IiUmCyssCm0c0xt3fd1x59UJtu79rhpUpZVuQZYyIbXPnRZVznvUOr-qGmdgdFQY0w1chJjZwU5aN4hMl-AKf4aCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357653385</pqid></control><display><type>article</type><title>Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Rogers, F. ; Xiao, M. ; Perez, K.M. ; Boggs, S. ; Erjavec, T. ; Fabris, L. ; Fuke, H. ; Hailey, C.J. ; Kozai, M. ; Lowell, A. ; Madden, N. ; Manghisoni, M. ; McBride, S. ; Re, V. ; Riceputi, E. ; Saffold, N. ; Shimizu, Y.</creator><creatorcontrib>Rogers, F. ; Xiao, M. ; Perez, K.M. ; Boggs, S. ; Erjavec, T. ; Fabris, L. ; Fuke, H. ; Hailey, C.J. ; Kozai, M. ; Lowell, A. ; Madden, N. ; Manghisoni, M. ; McBride, S. ; Re, V. ; Riceputi, E. ; Saffold, N. ; Shimizu, Y.</creatorcontrib><description>The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors will form the first large-area, relatively high-temperature Si(Li) detector system with sensitivity to X-rays to operate at high altitude. These 10 cm-diameter, 2.5 mm-thick, 4- or 8-strip detectors provide the active area, X-ray absorption efficiency, energy resolution, and particle tracking capability necessary for the GAPS exotic-atom particle identification technique. In this paper, the detector performance is validated on the bases of X-ray energy resolution and reconstruction of cosmic minimum ionizing particle (MIP) signals. We use the established noise model for semiconductor detectors to distinguish sources of noise due to the detector from those due to signal processing electronics. We demonstrate that detectors with either 4 strips or 8 strips can provide the required ≲4 keV (FWHM) X-ray energy resolution at flight temperatures of −35 to −45ˆC, given the proper choice of signal processing electronics. Approximately 1000 8-strip detectors will be used for the first GAPS Antarctic balloon flight, scheduled for late 2021.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/14/10/P10009</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Balloon flight ; Detectors ; Electronics ; Energy resolution ; High altitude ; High temperature ; Lithium ; Particle tracking ; Sensors ; Signal processing ; Silicon ; Strip ; X ray absorption ; X-rays</subject><ispartof>Journal of instrumentation, 2019-10, Vol.14 (10), p.P10009-P10009</ispartof><rights>Copyright IOP Publishing Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-bac69ebc4cca0808f7323d2e769a3f5f4b4e44b592dfee09f8ace89ee1039bf03</citedby><cites>FETCH-LOGICAL-c441t-bac69ebc4cca0808f7323d2e769a3f5f4b4e44b592dfee09f8ace89ee1039bf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rogers, F.</creatorcontrib><creatorcontrib>Xiao, M.</creatorcontrib><creatorcontrib>Perez, K.M.</creatorcontrib><creatorcontrib>Boggs, S.</creatorcontrib><creatorcontrib>Erjavec, T.</creatorcontrib><creatorcontrib>Fabris, L.</creatorcontrib><creatorcontrib>Fuke, H.</creatorcontrib><creatorcontrib>Hailey, C.J.</creatorcontrib><creatorcontrib>Kozai, M.</creatorcontrib><creatorcontrib>Lowell, A.</creatorcontrib><creatorcontrib>Madden, N.</creatorcontrib><creatorcontrib>Manghisoni, M.</creatorcontrib><creatorcontrib>McBride, S.</creatorcontrib><creatorcontrib>Re, V.</creatorcontrib><creatorcontrib>Riceputi, E.</creatorcontrib><creatorcontrib>Saffold, N.</creatorcontrib><creatorcontrib>Shimizu, Y.</creatorcontrib><title>Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment</title><title>Journal of instrumentation</title><description>The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors will form the first large-area, relatively high-temperature Si(Li) detector system with sensitivity to X-rays to operate at high altitude. These 10 cm-diameter, 2.5 mm-thick, 4- or 8-strip detectors provide the active area, X-ray absorption efficiency, energy resolution, and particle tracking capability necessary for the GAPS exotic-atom particle identification technique. In this paper, the detector performance is validated on the bases of X-ray energy resolution and reconstruction of cosmic minimum ionizing particle (MIP) signals. We use the established noise model for semiconductor detectors to distinguish sources of noise due to the detector from those due to signal processing electronics. We demonstrate that detectors with either 4 strips or 8 strips can provide the required ≲4 keV (FWHM) X-ray energy resolution at flight temperatures of −35 to −45ˆC, given the proper choice of signal processing electronics. Approximately 1000 8-strip detectors will be used for the first GAPS Antarctic balloon flight, scheduled for late 2021.</description><subject>Balloon flight</subject><subject>Detectors</subject><subject>Electronics</subject><subject>Energy resolution</subject><subject>High altitude</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Particle tracking</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Silicon</subject><subject>Strip</subject><subject>X ray absorption</subject><subject>X-rays</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYsoOKd_QQK-6EPtTZO2yeMYOoWCgyn4FtL0ZnZubU0ycP_elon4dC_nHs49fFF0TeGeghAJLbiIIU1pQnlCIVlSAJAn0eTvcPpvP48uvN8AZDLjMIlUqd0aY-1Qk1VzWzZ3pMaAJnTOE9s58h47fSC-HyTX7TC4A9FtTXrtQmO2SILT5rNp16RpSfhAspgtVwS_e3TNDttwGZ1ZvfV49Tun0dvjw-v8KS5fFs_zWRkbzmmIK21yiZXhxmgQIGzBUlanWORSM5tZXnHkvMpkWltEkFZog0IiUmCyssCm0c0xt3fd1x59UJtu79rhpUpZVuQZYyIbXPnRZVznvUOr-qGmdgdFQY0w1chJjZwU5aN4hMl-AKf4aCY</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Rogers, F.</creator><creator>Xiao, M.</creator><creator>Perez, K.M.</creator><creator>Boggs, S.</creator><creator>Erjavec, T.</creator><creator>Fabris, L.</creator><creator>Fuke, H.</creator><creator>Hailey, C.J.</creator><creator>Kozai, M.</creator><creator>Lowell, A.</creator><creator>Madden, N.</creator><creator>Manghisoni, M.</creator><creator>McBride, S.</creator><creator>Re, V.</creator><creator>Riceputi, E.</creator><creator>Saffold, N.</creator><creator>Shimizu, Y.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20191001</creationdate><title>Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment</title><author>Rogers, F. ; Xiao, M. ; Perez, K.M. ; Boggs, S. ; Erjavec, T. ; Fabris, L. ; Fuke, H. ; Hailey, C.J. ; Kozai, M. ; Lowell, A. ; Madden, N. ; Manghisoni, M. ; McBride, S. ; Re, V. ; Riceputi, E. ; Saffold, N. ; Shimizu, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-bac69ebc4cca0808f7323d2e769a3f5f4b4e44b592dfee09f8ace89ee1039bf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Balloon flight</topic><topic>Detectors</topic><topic>Electronics</topic><topic>Energy resolution</topic><topic>High altitude</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Particle tracking</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Silicon</topic><topic>Strip</topic><topic>X ray absorption</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogers, F.</creatorcontrib><creatorcontrib>Xiao, M.</creatorcontrib><creatorcontrib>Perez, K.M.</creatorcontrib><creatorcontrib>Boggs, S.</creatorcontrib><creatorcontrib>Erjavec, T.</creatorcontrib><creatorcontrib>Fabris, L.</creatorcontrib><creatorcontrib>Fuke, H.</creatorcontrib><creatorcontrib>Hailey, C.J.</creatorcontrib><creatorcontrib>Kozai, M.</creatorcontrib><creatorcontrib>Lowell, A.</creatorcontrib><creatorcontrib>Madden, N.</creatorcontrib><creatorcontrib>Manghisoni, M.</creatorcontrib><creatorcontrib>McBride, S.</creatorcontrib><creatorcontrib>Re, V.</creatorcontrib><creatorcontrib>Riceputi, E.</creatorcontrib><creatorcontrib>Saffold, N.</creatorcontrib><creatorcontrib>Shimizu, Y.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogers, F.</au><au>Xiao, M.</au><au>Perez, K.M.</au><au>Boggs, S.</au><au>Erjavec, T.</au><au>Fabris, L.</au><au>Fuke, H.</au><au>Hailey, C.J.</au><au>Kozai, M.</au><au>Lowell, A.</au><au>Madden, N.</au><au>Manghisoni, M.</au><au>McBride, S.</au><au>Re, V.</au><au>Riceputi, E.</au><au>Saffold, N.</au><au>Shimizu, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment</atitle><jtitle>Journal of instrumentation</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>14</volume><issue>10</issue><spage>P10009</spage><epage>P10009</epage><pages>P10009-P10009</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors will form the first large-area, relatively high-temperature Si(Li) detector system with sensitivity to X-rays to operate at high altitude. These 10 cm-diameter, 2.5 mm-thick, 4- or 8-strip detectors provide the active area, X-ray absorption efficiency, energy resolution, and particle tracking capability necessary for the GAPS exotic-atom particle identification technique. In this paper, the detector performance is validated on the bases of X-ray energy resolution and reconstruction of cosmic minimum ionizing particle (MIP) signals. We use the established noise model for semiconductor detectors to distinguish sources of noise due to the detector from those due to signal processing electronics. We demonstrate that detectors with either 4 strips or 8 strips can provide the required ≲4 keV (FWHM) X-ray energy resolution at flight temperatures of −35 to −45ˆC, given the proper choice of signal processing electronics. Approximately 1000 8-strip detectors will be used for the first GAPS Antarctic balloon flight, scheduled for late 2021.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/14/10/P10009</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-0221
ispartof Journal of instrumentation, 2019-10, Vol.14 (10), p.P10009-P10009
issn 1748-0221
1748-0221
language eng
recordid cdi_proquest_journals_2357653385
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Balloon flight
Detectors
Electronics
Energy resolution
High altitude
High temperature
Lithium
Particle tracking
Sensors
Signal processing
Silicon
Strip
X ray absorption
X-rays
title Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-area%20Si(Li)%20detectors%20for%20X-ray%20spectrometry%20and%20particle%20tracking%20in%20the%20GAPS%20experiment&rft.jtitle=Journal%20of%20instrumentation&rft.au=Rogers,%20F.&rft.date=2019-10-01&rft.volume=14&rft.issue=10&rft.spage=P10009&rft.epage=P10009&rft.pages=P10009-P10009&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/14/10/P10009&rft_dat=%3Cproquest_cross%3E2357653385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357653385&rft_id=info:pmid/&rfr_iscdi=true