Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment
The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors will form the first large-area, relatively high-te...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2019-10, Vol.14 (10), p.P10009-P10009 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | P10009 |
---|---|
container_issue | 10 |
container_start_page | P10009 |
container_title | Journal of instrumentation |
container_volume | 14 |
creator | Rogers, F. Xiao, M. Perez, K.M. Boggs, S. Erjavec, T. Fabris, L. Fuke, H. Hailey, C.J. Kozai, M. Lowell, A. Madden, N. Manghisoni, M. McBride, S. Re, V. Riceputi, E. Saffold, N. Shimizu, Y. |
description | The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors will form the first large-area, relatively high-temperature Si(Li) detector system with sensitivity to X-rays to operate at high altitude. These 10 cm-diameter, 2.5 mm-thick, 4- or 8-strip detectors provide the active area, X-ray absorption efficiency, energy resolution, and particle tracking capability necessary for the GAPS exotic-atom particle identification technique. In this paper, the detector performance is validated on the bases of X-ray energy resolution and reconstruction of cosmic minimum ionizing particle (MIP) signals. We use the established noise model for semiconductor detectors to distinguish sources of noise due to the detector from those due to signal processing electronics. We demonstrate that detectors with either 4 strips or 8 strips can provide the required ≲4 keV (FWHM) X-ray energy resolution at flight temperatures of −35 to −45ˆC, given the proper choice of signal processing electronics. Approximately 1000 8-strip detectors will be used for the first GAPS Antarctic balloon flight, scheduled for late 2021. |
doi_str_mv | 10.1088/1748-0221/14/10/P10009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357653385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357653385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-bac69ebc4cca0808f7323d2e769a3f5f4b4e44b592dfee09f8ace89ee1039bf03</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYsoOKd_QQK-6EPtTZO2yeMYOoWCgyn4FtL0ZnZubU0ycP_elon4dC_nHs49fFF0TeGeghAJLbiIIU1pQnlCIVlSAJAn0eTvcPpvP48uvN8AZDLjMIlUqd0aY-1Qk1VzWzZ3pMaAJnTOE9s58h47fSC-HyTX7TC4A9FtTXrtQmO2SILT5rNp16RpSfhAspgtVwS_e3TNDttwGZ1ZvfV49Tun0dvjw-v8KS5fFs_zWRkbzmmIK21yiZXhxmgQIGzBUlanWORSM5tZXnHkvMpkWltEkFZog0IiUmCyssCm0c0xt3fd1x59UJtu79rhpUpZVuQZYyIbXPnRZVznvUOr-qGmdgdFQY0w1chJjZwU5aN4hMl-AKf4aCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357653385</pqid></control><display><type>article</type><title>Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Rogers, F. ; Xiao, M. ; Perez, K.M. ; Boggs, S. ; Erjavec, T. ; Fabris, L. ; Fuke, H. ; Hailey, C.J. ; Kozai, M. ; Lowell, A. ; Madden, N. ; Manghisoni, M. ; McBride, S. ; Re, V. ; Riceputi, E. ; Saffold, N. ; Shimizu, Y.</creator><creatorcontrib>Rogers, F. ; Xiao, M. ; Perez, K.M. ; Boggs, S. ; Erjavec, T. ; Fabris, L. ; Fuke, H. ; Hailey, C.J. ; Kozai, M. ; Lowell, A. ; Madden, N. ; Manghisoni, M. ; McBride, S. ; Re, V. ; Riceputi, E. ; Saffold, N. ; Shimizu, Y.</creatorcontrib><description>The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors will form the first large-area, relatively high-temperature Si(Li) detector system with sensitivity to X-rays to operate at high altitude. These 10 cm-diameter, 2.5 mm-thick, 4- or 8-strip detectors provide the active area, X-ray absorption efficiency, energy resolution, and particle tracking capability necessary for the GAPS exotic-atom particle identification technique. In this paper, the detector performance is validated on the bases of X-ray energy resolution and reconstruction of cosmic minimum ionizing particle (MIP) signals. We use the established noise model for semiconductor detectors to distinguish sources of noise due to the detector from those due to signal processing electronics. We demonstrate that detectors with either 4 strips or 8 strips can provide the required ≲4 keV (FWHM) X-ray energy resolution at flight temperatures of −35 to −45ˆC, given the proper choice of signal processing electronics. Approximately 1000 8-strip detectors will be used for the first GAPS Antarctic balloon flight, scheduled for late 2021.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/14/10/P10009</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Balloon flight ; Detectors ; Electronics ; Energy resolution ; High altitude ; High temperature ; Lithium ; Particle tracking ; Sensors ; Signal processing ; Silicon ; Strip ; X ray absorption ; X-rays</subject><ispartof>Journal of instrumentation, 2019-10, Vol.14 (10), p.P10009-P10009</ispartof><rights>Copyright IOP Publishing Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-bac69ebc4cca0808f7323d2e769a3f5f4b4e44b592dfee09f8ace89ee1039bf03</citedby><cites>FETCH-LOGICAL-c441t-bac69ebc4cca0808f7323d2e769a3f5f4b4e44b592dfee09f8ace89ee1039bf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rogers, F.</creatorcontrib><creatorcontrib>Xiao, M.</creatorcontrib><creatorcontrib>Perez, K.M.</creatorcontrib><creatorcontrib>Boggs, S.</creatorcontrib><creatorcontrib>Erjavec, T.</creatorcontrib><creatorcontrib>Fabris, L.</creatorcontrib><creatorcontrib>Fuke, H.</creatorcontrib><creatorcontrib>Hailey, C.J.</creatorcontrib><creatorcontrib>Kozai, M.</creatorcontrib><creatorcontrib>Lowell, A.</creatorcontrib><creatorcontrib>Madden, N.</creatorcontrib><creatorcontrib>Manghisoni, M.</creatorcontrib><creatorcontrib>McBride, S.</creatorcontrib><creatorcontrib>Re, V.</creatorcontrib><creatorcontrib>Riceputi, E.</creatorcontrib><creatorcontrib>Saffold, N.</creatorcontrib><creatorcontrib>Shimizu, Y.</creatorcontrib><title>Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment</title><title>Journal of instrumentation</title><description>The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors will form the first large-area, relatively high-temperature Si(Li) detector system with sensitivity to X-rays to operate at high altitude. These 10 cm-diameter, 2.5 mm-thick, 4- or 8-strip detectors provide the active area, X-ray absorption efficiency, energy resolution, and particle tracking capability necessary for the GAPS exotic-atom particle identification technique. In this paper, the detector performance is validated on the bases of X-ray energy resolution and reconstruction of cosmic minimum ionizing particle (MIP) signals. We use the established noise model for semiconductor detectors to distinguish sources of noise due to the detector from those due to signal processing electronics. We demonstrate that detectors with either 4 strips or 8 strips can provide the required ≲4 keV (FWHM) X-ray energy resolution at flight temperatures of −35 to −45ˆC, given the proper choice of signal processing electronics. Approximately 1000 8-strip detectors will be used for the first GAPS Antarctic balloon flight, scheduled for late 2021.</description><subject>Balloon flight</subject><subject>Detectors</subject><subject>Electronics</subject><subject>Energy resolution</subject><subject>High altitude</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Particle tracking</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Silicon</subject><subject>Strip</subject><subject>X ray absorption</subject><subject>X-rays</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAUhYsoOKd_QQK-6EPtTZO2yeMYOoWCgyn4FtL0ZnZubU0ycP_elon4dC_nHs49fFF0TeGeghAJLbiIIU1pQnlCIVlSAJAn0eTvcPpvP48uvN8AZDLjMIlUqd0aY-1Qk1VzWzZ3pMaAJnTOE9s58h47fSC-HyTX7TC4A9FtTXrtQmO2SILT5rNp16RpSfhAspgtVwS_e3TNDttwGZ1ZvfV49Tun0dvjw-v8KS5fFs_zWRkbzmmIK21yiZXhxmgQIGzBUlanWORSM5tZXnHkvMpkWltEkFZog0IiUmCyssCm0c0xt3fd1x59UJtu79rhpUpZVuQZYyIbXPnRZVznvUOr-qGmdgdFQY0w1chJjZwU5aN4hMl-AKf4aCY</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Rogers, F.</creator><creator>Xiao, M.</creator><creator>Perez, K.M.</creator><creator>Boggs, S.</creator><creator>Erjavec, T.</creator><creator>Fabris, L.</creator><creator>Fuke, H.</creator><creator>Hailey, C.J.</creator><creator>Kozai, M.</creator><creator>Lowell, A.</creator><creator>Madden, N.</creator><creator>Manghisoni, M.</creator><creator>McBride, S.</creator><creator>Re, V.</creator><creator>Riceputi, E.</creator><creator>Saffold, N.</creator><creator>Shimizu, Y.</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20191001</creationdate><title>Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment</title><author>Rogers, F. ; Xiao, M. ; Perez, K.M. ; Boggs, S. ; Erjavec, T. ; Fabris, L. ; Fuke, H. ; Hailey, C.J. ; Kozai, M. ; Lowell, A. ; Madden, N. ; Manghisoni, M. ; McBride, S. ; Re, V. ; Riceputi, E. ; Saffold, N. ; Shimizu, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-bac69ebc4cca0808f7323d2e769a3f5f4b4e44b592dfee09f8ace89ee1039bf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Balloon flight</topic><topic>Detectors</topic><topic>Electronics</topic><topic>Energy resolution</topic><topic>High altitude</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Particle tracking</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Silicon</topic><topic>Strip</topic><topic>X ray absorption</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogers, F.</creatorcontrib><creatorcontrib>Xiao, M.</creatorcontrib><creatorcontrib>Perez, K.M.</creatorcontrib><creatorcontrib>Boggs, S.</creatorcontrib><creatorcontrib>Erjavec, T.</creatorcontrib><creatorcontrib>Fabris, L.</creatorcontrib><creatorcontrib>Fuke, H.</creatorcontrib><creatorcontrib>Hailey, C.J.</creatorcontrib><creatorcontrib>Kozai, M.</creatorcontrib><creatorcontrib>Lowell, A.</creatorcontrib><creatorcontrib>Madden, N.</creatorcontrib><creatorcontrib>Manghisoni, M.</creatorcontrib><creatorcontrib>McBride, S.</creatorcontrib><creatorcontrib>Re, V.</creatorcontrib><creatorcontrib>Riceputi, E.</creatorcontrib><creatorcontrib>Saffold, N.</creatorcontrib><creatorcontrib>Shimizu, Y.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogers, F.</au><au>Xiao, M.</au><au>Perez, K.M.</au><au>Boggs, S.</au><au>Erjavec, T.</au><au>Fabris, L.</au><au>Fuke, H.</au><au>Hailey, C.J.</au><au>Kozai, M.</au><au>Lowell, A.</au><au>Madden, N.</au><au>Manghisoni, M.</au><au>McBride, S.</au><au>Re, V.</au><au>Riceputi, E.</au><au>Saffold, N.</au><au>Shimizu, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment</atitle><jtitle>Journal of instrumentation</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>14</volume><issue>10</issue><spage>P10009</spage><epage>P10009</epage><pages>P10009-P10009</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>The first lithium-drifted silicon (Si(Li)) detectors to satisfy the unique geometric, performance, and cost requirements of the General Antiparticle Spectrometer (GAPS) experiment have been produced by Shimadzu Corporation. The GAPS Si(Li) detectors will form the first large-area, relatively high-temperature Si(Li) detector system with sensitivity to X-rays to operate at high altitude. These 10 cm-diameter, 2.5 mm-thick, 4- or 8-strip detectors provide the active area, X-ray absorption efficiency, energy resolution, and particle tracking capability necessary for the GAPS exotic-atom particle identification technique. In this paper, the detector performance is validated on the bases of X-ray energy resolution and reconstruction of cosmic minimum ionizing particle (MIP) signals. We use the established noise model for semiconductor detectors to distinguish sources of noise due to the detector from those due to signal processing electronics. We demonstrate that detectors with either 4 strips or 8 strips can provide the required ≲4 keV (FWHM) X-ray energy resolution at flight temperatures of −35 to −45ˆC, given the proper choice of signal processing electronics. Approximately 1000 8-strip detectors will be used for the first GAPS Antarctic balloon flight, scheduled for late 2021.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/14/10/P10009</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2019-10, Vol.14 (10), p.P10009-P10009 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_proquest_journals_2357653385 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Balloon flight Detectors Electronics Energy resolution High altitude High temperature Lithium Particle tracking Sensors Signal processing Silicon Strip X ray absorption X-rays |
title | Large-area Si(Li) detectors for X-ray spectrometry and particle tracking in the GAPS experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-area%20Si(Li)%20detectors%20for%20X-ray%20spectrometry%20and%20particle%20tracking%20in%20the%20GAPS%20experiment&rft.jtitle=Journal%20of%20instrumentation&rft.au=Rogers,%20F.&rft.date=2019-10-01&rft.volume=14&rft.issue=10&rft.spage=P10009&rft.epage=P10009&rft.pages=P10009-P10009&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/14/10/P10009&rft_dat=%3Cproquest_cross%3E2357653385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357653385&rft_id=info:pmid/&rfr_iscdi=true |