Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts

A hydrodynamic model has been developed, which allows planning the laser cladding process, taking into account the heat dissipation geometry. Typical situations of heat dissipation are considered at 3D parts printing: diffusion into a massive substrate, the edge of a massive part, and a thin wall. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum electronics (Woodbury, N.Y.) N.Y.), 2018-09, Vol.48 (8), p.743-748
Hauptverfasser: Niz'ev, V.G., Khomenko, M.D., Mirzade, F.Kh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 748
container_issue 8
container_start_page 743
container_title Quantum electronics (Woodbury, N.Y.)
container_volume 48
creator Niz'ev, V.G.
Khomenko, M.D.
Mirzade, F.Kh
description A hydrodynamic model has been developed, which allows planning the laser cladding process, taking into account the heat dissipation geometry. Typical situations of heat dissipation are considered at 3D parts printing: diffusion into a massive substrate, the edge of a massive part, and a thin wall. The laser power regimes are determined for different heat-dissipation geometries. The possibility of high-quality laser cladding at small turning radii is shown.
doi_str_mv 10.1070/QEL16708
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357613356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357613356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-92451a33cb51ab8c8bfee96d2106494f47e92776a69771086180f9f7aafe72ea3</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMoOIwD_oSCLtxUkybNYynD-IABFXRd0jSdibRJTTKL_ntTq8zC1T2L75577gHgEsFbBBm8e9tsEWWQn4AFIpTnhAlxmjSkOGcc8XOwCsHUsCQElpzyBYiv3ikdQjZ00lpjd5m0TeaGaHoTZDTOZq7NOhm0z1Qnm2ZClLPBNNpPej823jWjlb1R4Wd5r2XMGpMODbPBTrteRz9OToP0MVyAs1Z2Qa9-5xJ8PGze10_59uXxeX2_zRWmMOaiICWSGKs6jZorXrdaC9oU6R8iSEuYFgVjVFLBGIKcIg5b0TIpW80KLfESXM2-LkRTBWWiVvsU3moVqwJDCDEWR2rw7uugQ6w-3cHbFCwxJaMI45Im6mamlHcheN1Wgze99GOFYDWVX_2Vn9DrGTVuOHr9w74BLw6C4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357613356</pqid></control><display><type>article</type><title>Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Niz'ev, V.G. ; Khomenko, M.D. ; Mirzade, F.Kh</creator><creatorcontrib>Niz'ev, V.G. ; Khomenko, M.D. ; Mirzade, F.Kh</creatorcontrib><description>A hydrodynamic model has been developed, which allows planning the laser cladding process, taking into account the heat dissipation geometry. Typical situations of heat dissipation are considered at 3D parts printing: diffusion into a massive substrate, the edge of a massive part, and a thin wall. The laser power regimes are determined for different heat-dissipation geometries. The possibility of high-quality laser cladding at small turning radii is shown.</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QEL16708</identifier><language>eng</language><publisher>Bristol: Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</publisher><subject>CLADDING ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computational fluid dynamics ; direct numerical simulation ; Fluid flow ; GEOMETRY ; HEAT TRANSFER ; heat-dissipation geometry ; HYDRODYNAMIC MODEL ; HYDRODYNAMICS ; Laser beam cladding ; laser cladding ; LASERS ; OPTIMIZATION ; Process planning ; SUBSTRATES ; THERMAL DIFFUSIVITY ; THERMAL EFFLUENTS ; Thin walls ; Three dimensional printing</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2018-09, Vol.48 (8), p.743-748</ispartof><rights>2018 Kvantovaya Elektronika, Turpion Ltd and IOP Publishing Ltd</rights><rights>Copyright IOP Publishing Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-92451a33cb51ab8c8bfee96d2106494f47e92776a69771086180f9f7aafe72ea3</citedby><cites>FETCH-LOGICAL-c360t-92451a33cb51ab8c8bfee96d2106494f47e92776a69771086180f9f7aafe72ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QEL16708/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/23000339$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Niz'ev, V.G.</creatorcontrib><creatorcontrib>Khomenko, M.D.</creatorcontrib><creatorcontrib>Mirzade, F.Kh</creatorcontrib><title>Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts</title><title>Quantum electronics (Woodbury, N.Y.)</title><addtitle>Quantum Electron</addtitle><description>A hydrodynamic model has been developed, which allows planning the laser cladding process, taking into account the heat dissipation geometry. Typical situations of heat dissipation are considered at 3D parts printing: diffusion into a massive substrate, the edge of a massive part, and a thin wall. The laser power regimes are determined for different heat-dissipation geometries. The possibility of high-quality laser cladding at small turning radii is shown.</description><subject>CLADDING</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computational fluid dynamics</subject><subject>direct numerical simulation</subject><subject>Fluid flow</subject><subject>GEOMETRY</subject><subject>HEAT TRANSFER</subject><subject>heat-dissipation geometry</subject><subject>HYDRODYNAMIC MODEL</subject><subject>HYDRODYNAMICS</subject><subject>Laser beam cladding</subject><subject>laser cladding</subject><subject>LASERS</subject><subject>OPTIMIZATION</subject><subject>Process planning</subject><subject>SUBSTRATES</subject><subject>THERMAL DIFFUSIVITY</subject><subject>THERMAL EFFLUENTS</subject><subject>Thin walls</subject><subject>Three dimensional printing</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNplkEtLxDAUhYMoOIwD_oSCLtxUkybNYynD-IABFXRd0jSdibRJTTKL_ntTq8zC1T2L75577gHgEsFbBBm8e9tsEWWQn4AFIpTnhAlxmjSkOGcc8XOwCsHUsCQElpzyBYiv3ikdQjZ00lpjd5m0TeaGaHoTZDTOZq7NOhm0z1Qnm2ZClLPBNNpPej823jWjlb1R4Wd5r2XMGpMODbPBTrteRz9OToP0MVyAs1Z2Qa9-5xJ8PGze10_59uXxeX2_zRWmMOaiICWSGKs6jZorXrdaC9oU6R8iSEuYFgVjVFLBGIKcIg5b0TIpW80KLfESXM2-LkRTBWWiVvsU3moVqwJDCDEWR2rw7uugQ6w-3cHbFCwxJaMI45Im6mamlHcheN1Wgze99GOFYDWVX_2Vn9DrGTVuOHr9w74BLw6C4Q</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Niz'ev, V.G.</creator><creator>Khomenko, M.D.</creator><creator>Mirzade, F.Kh</creator><general>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20180901</creationdate><title>Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts</title><author>Niz'ev, V.G. ; Khomenko, M.D. ; Mirzade, F.Kh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-92451a33cb51ab8c8bfee96d2106494f47e92776a69771086180f9f7aafe72ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CLADDING</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computational fluid dynamics</topic><topic>direct numerical simulation</topic><topic>Fluid flow</topic><topic>GEOMETRY</topic><topic>HEAT TRANSFER</topic><topic>heat-dissipation geometry</topic><topic>HYDRODYNAMIC MODEL</topic><topic>HYDRODYNAMICS</topic><topic>Laser beam cladding</topic><topic>laser cladding</topic><topic>LASERS</topic><topic>OPTIMIZATION</topic><topic>Process planning</topic><topic>SUBSTRATES</topic><topic>THERMAL DIFFUSIVITY</topic><topic>THERMAL EFFLUENTS</topic><topic>Thin walls</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niz'ev, V.G.</creatorcontrib><creatorcontrib>Khomenko, M.D.</creatorcontrib><creatorcontrib>Mirzade, F.Kh</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niz'ev, V.G.</au><au>Khomenko, M.D.</au><au>Mirzade, F.Kh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><addtitle>Quantum Electron</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>48</volume><issue>8</issue><spage>743</spage><epage>748</epage><pages>743-748</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>A hydrodynamic model has been developed, which allows planning the laser cladding process, taking into account the heat dissipation geometry. Typical situations of heat dissipation are considered at 3D parts printing: diffusion into a massive substrate, the edge of a massive part, and a thin wall. The laser power regimes are determined for different heat-dissipation geometries. The possibility of high-quality laser cladding at small turning radii is shown.</abstract><cop>Bristol</cop><pub>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</pub><doi>10.1070/QEL16708</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7818
ispartof Quantum electronics (Woodbury, N.Y.), 2018-09, Vol.48 (8), p.743-748
issn 1063-7818
1468-4799
language eng
recordid cdi_proquest_journals_2357613356
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects CLADDING
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computational fluid dynamics
direct numerical simulation
Fluid flow
GEOMETRY
HEAT TRANSFER
heat-dissipation geometry
HYDRODYNAMIC MODEL
HYDRODYNAMICS
Laser beam cladding
laser cladding
LASERS
OPTIMIZATION
Process planning
SUBSTRATES
THERMAL DIFFUSIVITY
THERMAL EFFLUENTS
Thin walls
Three dimensional printing
title Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20planning%20and%20optimisation%20of%20laser%20cladding%20considering%20hydrodynamics%20and%20heat%20dissipation%20geometry%20of%20parts&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Niz'ev,%20V.G.&rft.date=2018-09-01&rft.volume=48&rft.issue=8&rft.spage=743&rft.epage=748&rft.pages=743-748&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QEL16708&rft_dat=%3Cproquest_cross%3E2357613356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357613356&rft_id=info:pmid/&rfr_iscdi=true