Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts
A hydrodynamic model has been developed, which allows planning the laser cladding process, taking into account the heat dissipation geometry. Typical situations of heat dissipation are considered at 3D parts printing: diffusion into a massive substrate, the edge of a massive part, and a thin wall. T...
Gespeichert in:
Veröffentlicht in: | Quantum electronics (Woodbury, N.Y.) N.Y.), 2018-09, Vol.48 (8), p.743-748 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 748 |
---|---|
container_issue | 8 |
container_start_page | 743 |
container_title | Quantum electronics (Woodbury, N.Y.) |
container_volume | 48 |
creator | Niz'ev, V.G. Khomenko, M.D. Mirzade, F.Kh |
description | A hydrodynamic model has been developed, which allows planning the laser cladding process, taking into account the heat dissipation geometry. Typical situations of heat dissipation are considered at 3D parts printing: diffusion into a massive substrate, the edge of a massive part, and a thin wall. The laser power regimes are determined for different heat-dissipation geometries. The possibility of high-quality laser cladding at small turning radii is shown. |
doi_str_mv | 10.1070/QEL16708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357613356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357613356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-92451a33cb51ab8c8bfee96d2106494f47e92776a69771086180f9f7aafe72ea3</originalsourceid><addsrcrecordid>eNplkEtLxDAUhYMoOIwD_oSCLtxUkybNYynD-IABFXRd0jSdibRJTTKL_ntTq8zC1T2L75577gHgEsFbBBm8e9tsEWWQn4AFIpTnhAlxmjSkOGcc8XOwCsHUsCQElpzyBYiv3ikdQjZ00lpjd5m0TeaGaHoTZDTOZq7NOhm0z1Qnm2ZClLPBNNpPej823jWjlb1R4Wd5r2XMGpMODbPBTrteRz9OToP0MVyAs1Z2Qa9-5xJ8PGze10_59uXxeX2_zRWmMOaiICWSGKs6jZorXrdaC9oU6R8iSEuYFgVjVFLBGIKcIg5b0TIpW80KLfESXM2-LkRTBWWiVvsU3moVqwJDCDEWR2rw7uugQ6w-3cHbFCwxJaMI45Im6mamlHcheN1Wgze99GOFYDWVX_2Vn9DrGTVuOHr9w74BLw6C4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357613356</pqid></control><display><type>article</type><title>Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Niz'ev, V.G. ; Khomenko, M.D. ; Mirzade, F.Kh</creator><creatorcontrib>Niz'ev, V.G. ; Khomenko, M.D. ; Mirzade, F.Kh</creatorcontrib><description>A hydrodynamic model has been developed, which allows planning the laser cladding process, taking into account the heat dissipation geometry. Typical situations of heat dissipation are considered at 3D parts printing: diffusion into a massive substrate, the edge of a massive part, and a thin wall. The laser power regimes are determined for different heat-dissipation geometries. The possibility of high-quality laser cladding at small turning radii is shown.</description><identifier>ISSN: 1063-7818</identifier><identifier>EISSN: 1468-4799</identifier><identifier>DOI: 10.1070/QEL16708</identifier><language>eng</language><publisher>Bristol: Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</publisher><subject>CLADDING ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Computational fluid dynamics ; direct numerical simulation ; Fluid flow ; GEOMETRY ; HEAT TRANSFER ; heat-dissipation geometry ; HYDRODYNAMIC MODEL ; HYDRODYNAMICS ; Laser beam cladding ; laser cladding ; LASERS ; OPTIMIZATION ; Process planning ; SUBSTRATES ; THERMAL DIFFUSIVITY ; THERMAL EFFLUENTS ; Thin walls ; Three dimensional printing</subject><ispartof>Quantum electronics (Woodbury, N.Y.), 2018-09, Vol.48 (8), p.743-748</ispartof><rights>2018 Kvantovaya Elektronika, Turpion Ltd and IOP Publishing Ltd</rights><rights>Copyright IOP Publishing Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-92451a33cb51ab8c8bfee96d2106494f47e92776a69771086180f9f7aafe72ea3</citedby><cites>FETCH-LOGICAL-c360t-92451a33cb51ab8c8bfee96d2106494f47e92776a69771086180f9f7aafe72ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/QEL16708/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/23000339$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Niz'ev, V.G.</creatorcontrib><creatorcontrib>Khomenko, M.D.</creatorcontrib><creatorcontrib>Mirzade, F.Kh</creatorcontrib><title>Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts</title><title>Quantum electronics (Woodbury, N.Y.)</title><addtitle>Quantum Electron</addtitle><description>A hydrodynamic model has been developed, which allows planning the laser cladding process, taking into account the heat dissipation geometry. Typical situations of heat dissipation are considered at 3D parts printing: diffusion into a massive substrate, the edge of a massive part, and a thin wall. The laser power regimes are determined for different heat-dissipation geometries. The possibility of high-quality laser cladding at small turning radii is shown.</description><subject>CLADDING</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Computational fluid dynamics</subject><subject>direct numerical simulation</subject><subject>Fluid flow</subject><subject>GEOMETRY</subject><subject>HEAT TRANSFER</subject><subject>heat-dissipation geometry</subject><subject>HYDRODYNAMIC MODEL</subject><subject>HYDRODYNAMICS</subject><subject>Laser beam cladding</subject><subject>laser cladding</subject><subject>LASERS</subject><subject>OPTIMIZATION</subject><subject>Process planning</subject><subject>SUBSTRATES</subject><subject>THERMAL DIFFUSIVITY</subject><subject>THERMAL EFFLUENTS</subject><subject>Thin walls</subject><subject>Three dimensional printing</subject><issn>1063-7818</issn><issn>1468-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNplkEtLxDAUhYMoOIwD_oSCLtxUkybNYynD-IABFXRd0jSdibRJTTKL_ntTq8zC1T2L75577gHgEsFbBBm8e9tsEWWQn4AFIpTnhAlxmjSkOGcc8XOwCsHUsCQElpzyBYiv3ikdQjZ00lpjd5m0TeaGaHoTZDTOZq7NOhm0z1Qnm2ZClLPBNNpPej823jWjlb1R4Wd5r2XMGpMODbPBTrteRz9OToP0MVyAs1Z2Qa9-5xJ8PGze10_59uXxeX2_zRWmMOaiICWSGKs6jZorXrdaC9oU6R8iSEuYFgVjVFLBGIKcIg5b0TIpW80KLfESXM2-LkRTBWWiVvsU3moVqwJDCDEWR2rw7uugQ6w-3cHbFCwxJaMI45Im6mamlHcheN1Wgze99GOFYDWVX_2Vn9DrGTVuOHr9w74BLw6C4Q</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Niz'ev, V.G.</creator><creator>Khomenko, M.D.</creator><creator>Mirzade, F.Kh</creator><general>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20180901</creationdate><title>Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts</title><author>Niz'ev, V.G. ; Khomenko, M.D. ; Mirzade, F.Kh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-92451a33cb51ab8c8bfee96d2106494f47e92776a69771086180f9f7aafe72ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CLADDING</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Computational fluid dynamics</topic><topic>direct numerical simulation</topic><topic>Fluid flow</topic><topic>GEOMETRY</topic><topic>HEAT TRANSFER</topic><topic>heat-dissipation geometry</topic><topic>HYDRODYNAMIC MODEL</topic><topic>HYDRODYNAMICS</topic><topic>Laser beam cladding</topic><topic>laser cladding</topic><topic>LASERS</topic><topic>OPTIMIZATION</topic><topic>Process planning</topic><topic>SUBSTRATES</topic><topic>THERMAL DIFFUSIVITY</topic><topic>THERMAL EFFLUENTS</topic><topic>Thin walls</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niz'ev, V.G.</creatorcontrib><creatorcontrib>Khomenko, M.D.</creatorcontrib><creatorcontrib>Mirzade, F.Kh</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niz'ev, V.G.</au><au>Khomenko, M.D.</au><au>Mirzade, F.Kh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts</atitle><jtitle>Quantum electronics (Woodbury, N.Y.)</jtitle><addtitle>Quantum Electron</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>48</volume><issue>8</issue><spage>743</spage><epage>748</epage><pages>743-748</pages><issn>1063-7818</issn><eissn>1468-4799</eissn><abstract>A hydrodynamic model has been developed, which allows planning the laser cladding process, taking into account the heat dissipation geometry. Typical situations of heat dissipation are considered at 3D parts printing: diffusion into a massive substrate, the edge of a massive part, and a thin wall. The laser power regimes are determined for different heat-dissipation geometries. The possibility of high-quality laser cladding at small turning radii is shown.</abstract><cop>Bristol</cop><pub>Kvantovaya Elektronika, Turpion Ltd and IOP Publishing</pub><doi>10.1070/QEL16708</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7818 |
ispartof | Quantum electronics (Woodbury, N.Y.), 2018-09, Vol.48 (8), p.743-748 |
issn | 1063-7818 1468-4799 |
language | eng |
recordid | cdi_proquest_journals_2357613356 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | CLADDING CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computational fluid dynamics direct numerical simulation Fluid flow GEOMETRY HEAT TRANSFER heat-dissipation geometry HYDRODYNAMIC MODEL HYDRODYNAMICS Laser beam cladding laser cladding LASERS OPTIMIZATION Process planning SUBSTRATES THERMAL DIFFUSIVITY THERMAL EFFLUENTS Thin walls Three dimensional printing |
title | Process planning and optimisation of laser cladding considering hydrodynamics and heat dissipation geometry of parts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20planning%20and%20optimisation%20of%20laser%20cladding%20considering%20hydrodynamics%20and%20heat%20dissipation%20geometry%20of%20parts&rft.jtitle=Quantum%20electronics%20(Woodbury,%20N.Y.)&rft.au=Niz'ev,%20V.G.&rft.date=2018-09-01&rft.volume=48&rft.issue=8&rft.spage=743&rft.epage=748&rft.pages=743-748&rft.issn=1063-7818&rft.eissn=1468-4799&rft_id=info:doi/10.1070/QEL16708&rft_dat=%3Cproquest_cross%3E2357613356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357613356&rft_id=info:pmid/&rfr_iscdi=true |