Abundance Estimates for 16 Elements in 6 Million Stars from LAMOST DR5 Low-Resolution Spectra

We present the determination of stellar parameters and individual elemental abundances for 6 million stars from ∼8 million low-resolution (R ∼ 1800) spectra from LAMOST DR5. This is based on a modeling approach that we dub the data-driven Payne (DD-Payne), which inherits essential ingredients from b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal. Supplement series 2019-12, Vol.245 (2), p.34
Hauptverfasser: Xiang, Maosheng, Ting, Yuan-Sen, Rix, Hans-Walter, Sandford, Nathan, Buder, Sven, Lind, Karin, Liu, Xiao-Wei, Shi, Jian-Rong, Zhang, Hua-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 34
container_title The Astrophysical journal. Supplement series
container_volume 245
creator Xiang, Maosheng
Ting, Yuan-Sen
Rix, Hans-Walter
Sandford, Nathan
Buder, Sven
Lind, Karin
Liu, Xiao-Wei
Shi, Jian-Rong
Zhang, Hua-Wei
description We present the determination of stellar parameters and individual elemental abundances for 6 million stars from ∼8 million low-resolution (R ∼ 1800) spectra from LAMOST DR5. This is based on a modeling approach that we dub the data-driven Payne (DD-Payne), which inherits essential ingredients from both the Payne and the Cannon. It is a data-driven model that incorporates constraints from theoretical spectral models to ensure the derived abundance estimates are physically sensible. Stars in LAMOST DR5 that are in common with either GALAH DR2 or APOGEE DR14 are used to train a model that delivers stellar parameters (Teff, log g, Vmic) and abundances for 16 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Ba) over a metallicity range of −4 dex < [Fe/H] < 0.6 dex when applied to the LAMOST spectra. Cross-validation and repeat observations suggest that, for S/Npixel ≥ 50, the typical internal abundance precision is 0.03-0.1 dex for the majority of these elements, with 0.2-0.3 dex for Cu and Ba, and the internal precision of Teff and log g is better than 30 K and 0.07 dex, respectively. Abundance systematics at the ∼0.1 dex level are present in these estimates but are inherited from the high-resolution surveys' training labels. For some elements, GALAH provides more robust training labels, for others, APOGEE. We provide flags to guide the quality of the label determination and identify binary/multiple stars in LAMOST DR5. An electronic version of the abundance catalog is made publicly available.12
doi_str_mv 10.3847/1538-4365/ab5364
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2357612630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357612630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-dd81af64f114d82055bb894f18aef9f76e7dc2632c058bcdfc34ac9cdc691e753</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKfvPgZ8tS5pPto-jm1-QMdgm75JSNNEOrqmJi3D_97Minvy6XIvP8495wBwi9EDSWkywYykESWcTWTBCKdnYPR3OgcjhHgSIUSzS3Dl_Q4hlDCSjcD7tOibUjZKw4Xvqr3stIfGOog5XNR6r5vOw6qBHC6ruq5sAzeddAFxdg_z6XK12cL5msHcHqK19rbuux-o1apz8hpcGFl7ffM7x-D1cbGdPUf56ullNs0jRXDSRWWZYmk4NRjTMo0RY0WRZmFNpTaZSbhOShVzEivE0kKVRhEqVaZKxTOsQ5AxuB90_UG3fSFaF5K4L2FlJebV21RY9yH6XlAU1GnA7wa8dfaz174TO9u7JjgUMWEJx-EXChQaKOWs906bP1mMxLFzcSxYHAsWQ-cnH5VtT5r_4t-lloDX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357612630</pqid></control><display><type>article</type><title>Abundance Estimates for 16 Elements in 6 Million Stars from LAMOST DR5 Low-Resolution Spectra</title><source>IOP Publishing Free Content</source><creator>Xiang, Maosheng ; Ting, Yuan-Sen ; Rix, Hans-Walter ; Sandford, Nathan ; Buder, Sven ; Lind, Karin ; Liu, Xiao-Wei ; Shi, Jian-Rong ; Zhang, Hua-Wei</creator><creatorcontrib>Xiang, Maosheng ; Ting, Yuan-Sen ; Rix, Hans-Walter ; Sandford, Nathan ; Buder, Sven ; Lind, Karin ; Liu, Xiao-Wei ; Shi, Jian-Rong ; Zhang, Hua-Wei</creatorcontrib><description>We present the determination of stellar parameters and individual elemental abundances for 6 million stars from ∼8 million low-resolution (R ∼ 1800) spectra from LAMOST DR5. This is based on a modeling approach that we dub the data-driven Payne (DD-Payne), which inherits essential ingredients from both the Payne and the Cannon. It is a data-driven model that incorporates constraints from theoretical spectral models to ensure the derived abundance estimates are physically sensible. Stars in LAMOST DR5 that are in common with either GALAH DR2 or APOGEE DR14 are used to train a model that delivers stellar parameters (Teff, log g, Vmic) and abundances for 16 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Ba) over a metallicity range of −4 dex &lt; [Fe/H] &lt; 0.6 dex when applied to the LAMOST spectra. Cross-validation and repeat observations suggest that, for S/Npixel ≥ 50, the typical internal abundance precision is 0.03-0.1 dex for the majority of these elements, with 0.2-0.3 dex for Cu and Ba, and the internal precision of Teff and log g is better than 30 K and 0.07 dex, respectively. Abundance systematics at the ∼0.1 dex level are present in these estimates but are inherited from the high-resolution surveys' training labels. For some elements, GALAH provides more robust training labels, for others, APOGEE. We provide flags to guide the quality of the label determination and identify binary/multiple stars in LAMOST DR5. An electronic version of the abundance catalog is made publicly available.12</description><identifier>ISSN: 0067-0049</identifier><identifier>ISSN: 1538-4365</identifier><identifier>EISSN: 1538-4365</identifier><identifier>DOI: 10.3847/1538-4365/ab5364</identifier><language>eng</language><publisher>Saskatoon: The American Astronomical Society</publisher><subject>Abundance ; Aluminum ; Astronomy data analysis ; Astronomy data modeling ; Astronomy databases ; Barium ; Binary stars ; Chromium ; Constraint modelling ; Copper ; Estimates ; Fundamental parameters of stars ; Iron ; Labels ; Magnesium ; Manganese ; Metallicity ; Milky Way Galaxy ; Nickel ; Parameters ; Silicon ; Sky surveys ; Spectra ; Spectroscopic binary stars ; Spectroscopy ; Stars ; Stellar abundances ; Stellar atmospheres ; Stellar models ; Stellar properties ; Stellar spectral lines ; Systematics ; Titanium ; Training</subject><ispartof>The Astrophysical journal. Supplement series, 2019-12, Vol.245 (2), p.34</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-dd81af64f114d82055bb894f18aef9f76e7dc2632c058bcdfc34ac9cdc691e753</citedby><cites>FETCH-LOGICAL-c317t-dd81af64f114d82055bb894f18aef9f76e7dc2632c058bcdfc34ac9cdc691e753</cites><orcidid>0000-0002-5818-8769 ; 0000-0001-5082-9536 ; 0000-0003-4996-9069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/ab5364/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4365/ab5364$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-408204$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Maosheng</creatorcontrib><creatorcontrib>Ting, Yuan-Sen</creatorcontrib><creatorcontrib>Rix, Hans-Walter</creatorcontrib><creatorcontrib>Sandford, Nathan</creatorcontrib><creatorcontrib>Buder, Sven</creatorcontrib><creatorcontrib>Lind, Karin</creatorcontrib><creatorcontrib>Liu, Xiao-Wei</creatorcontrib><creatorcontrib>Shi, Jian-Rong</creatorcontrib><creatorcontrib>Zhang, Hua-Wei</creatorcontrib><title>Abundance Estimates for 16 Elements in 6 Million Stars from LAMOST DR5 Low-Resolution Spectra</title><title>The Astrophysical journal. Supplement series</title><addtitle>APJS</addtitle><addtitle>Astrophys. J. Suppl</addtitle><description>We present the determination of stellar parameters and individual elemental abundances for 6 million stars from ∼8 million low-resolution (R ∼ 1800) spectra from LAMOST DR5. This is based on a modeling approach that we dub the data-driven Payne (DD-Payne), which inherits essential ingredients from both the Payne and the Cannon. It is a data-driven model that incorporates constraints from theoretical spectral models to ensure the derived abundance estimates are physically sensible. Stars in LAMOST DR5 that are in common with either GALAH DR2 or APOGEE DR14 are used to train a model that delivers stellar parameters (Teff, log g, Vmic) and abundances for 16 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Ba) over a metallicity range of −4 dex &lt; [Fe/H] &lt; 0.6 dex when applied to the LAMOST spectra. Cross-validation and repeat observations suggest that, for S/Npixel ≥ 50, the typical internal abundance precision is 0.03-0.1 dex for the majority of these elements, with 0.2-0.3 dex for Cu and Ba, and the internal precision of Teff and log g is better than 30 K and 0.07 dex, respectively. Abundance systematics at the ∼0.1 dex level are present in these estimates but are inherited from the high-resolution surveys' training labels. For some elements, GALAH provides more robust training labels, for others, APOGEE. We provide flags to guide the quality of the label determination and identify binary/multiple stars in LAMOST DR5. An electronic version of the abundance catalog is made publicly available.12</description><subject>Abundance</subject><subject>Aluminum</subject><subject>Astronomy data analysis</subject><subject>Astronomy data modeling</subject><subject>Astronomy databases</subject><subject>Barium</subject><subject>Binary stars</subject><subject>Chromium</subject><subject>Constraint modelling</subject><subject>Copper</subject><subject>Estimates</subject><subject>Fundamental parameters of stars</subject><subject>Iron</subject><subject>Labels</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Metallicity</subject><subject>Milky Way Galaxy</subject><subject>Nickel</subject><subject>Parameters</subject><subject>Silicon</subject><subject>Sky surveys</subject><subject>Spectra</subject><subject>Spectroscopic binary stars</subject><subject>Spectroscopy</subject><subject>Stars</subject><subject>Stellar abundances</subject><subject>Stellar atmospheres</subject><subject>Stellar models</subject><subject>Stellar properties</subject><subject>Stellar spectral lines</subject><subject>Systematics</subject><subject>Titanium</subject><subject>Training</subject><issn>0067-0049</issn><issn>1538-4365</issn><issn>1538-4365</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kN1LwzAUxYMoOKfvPgZ8tS5pPto-jm1-QMdgm75JSNNEOrqmJi3D_97Minvy6XIvP8495wBwi9EDSWkywYykESWcTWTBCKdnYPR3OgcjhHgSIUSzS3Dl_Q4hlDCSjcD7tOibUjZKw4Xvqr3stIfGOog5XNR6r5vOw6qBHC6ruq5sAzeddAFxdg_z6XK12cL5msHcHqK19rbuux-o1apz8hpcGFl7ffM7x-D1cbGdPUf56ullNs0jRXDSRWWZYmk4NRjTMo0RY0WRZmFNpTaZSbhOShVzEivE0kKVRhEqVaZKxTOsQ5AxuB90_UG3fSFaF5K4L2FlJebV21RY9yH6XlAU1GnA7wa8dfaz174TO9u7JjgUMWEJx-EXChQaKOWs906bP1mMxLFzcSxYHAsWQ-cnH5VtT5r_4t-lloDX</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Xiang, Maosheng</creator><creator>Ting, Yuan-Sen</creator><creator>Rix, Hans-Walter</creator><creator>Sandford, Nathan</creator><creator>Buder, Sven</creator><creator>Lind, Karin</creator><creator>Liu, Xiao-Wei</creator><creator>Shi, Jian-Rong</creator><creator>Zhang, Hua-Wei</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-5818-8769</orcidid><orcidid>https://orcid.org/0000-0001-5082-9536</orcidid><orcidid>https://orcid.org/0000-0003-4996-9069</orcidid></search><sort><creationdate>20191201</creationdate><title>Abundance Estimates for 16 Elements in 6 Million Stars from LAMOST DR5 Low-Resolution Spectra</title><author>Xiang, Maosheng ; Ting, Yuan-Sen ; Rix, Hans-Walter ; Sandford, Nathan ; Buder, Sven ; Lind, Karin ; Liu, Xiao-Wei ; Shi, Jian-Rong ; Zhang, Hua-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-dd81af64f114d82055bb894f18aef9f76e7dc2632c058bcdfc34ac9cdc691e753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Abundance</topic><topic>Aluminum</topic><topic>Astronomy data analysis</topic><topic>Astronomy data modeling</topic><topic>Astronomy databases</topic><topic>Barium</topic><topic>Binary stars</topic><topic>Chromium</topic><topic>Constraint modelling</topic><topic>Copper</topic><topic>Estimates</topic><topic>Fundamental parameters of stars</topic><topic>Iron</topic><topic>Labels</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Metallicity</topic><topic>Milky Way Galaxy</topic><topic>Nickel</topic><topic>Parameters</topic><topic>Silicon</topic><topic>Sky surveys</topic><topic>Spectra</topic><topic>Spectroscopic binary stars</topic><topic>Spectroscopy</topic><topic>Stars</topic><topic>Stellar abundances</topic><topic>Stellar atmospheres</topic><topic>Stellar models</topic><topic>Stellar properties</topic><topic>Stellar spectral lines</topic><topic>Systematics</topic><topic>Titanium</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Maosheng</creatorcontrib><creatorcontrib>Ting, Yuan-Sen</creatorcontrib><creatorcontrib>Rix, Hans-Walter</creatorcontrib><creatorcontrib>Sandford, Nathan</creatorcontrib><creatorcontrib>Buder, Sven</creatorcontrib><creatorcontrib>Lind, Karin</creatorcontrib><creatorcontrib>Liu, Xiao-Wei</creatorcontrib><creatorcontrib>Shi, Jian-Rong</creatorcontrib><creatorcontrib>Zhang, Hua-Wei</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>The Astrophysical journal. Supplement series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiang, Maosheng</au><au>Ting, Yuan-Sen</au><au>Rix, Hans-Walter</au><au>Sandford, Nathan</au><au>Buder, Sven</au><au>Lind, Karin</au><au>Liu, Xiao-Wei</au><au>Shi, Jian-Rong</au><au>Zhang, Hua-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abundance Estimates for 16 Elements in 6 Million Stars from LAMOST DR5 Low-Resolution Spectra</atitle><jtitle>The Astrophysical journal. Supplement series</jtitle><stitle>APJS</stitle><addtitle>Astrophys. J. Suppl</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>245</volume><issue>2</issue><spage>34</spage><pages>34-</pages><issn>0067-0049</issn><issn>1538-4365</issn><eissn>1538-4365</eissn><abstract>We present the determination of stellar parameters and individual elemental abundances for 6 million stars from ∼8 million low-resolution (R ∼ 1800) spectra from LAMOST DR5. This is based on a modeling approach that we dub the data-driven Payne (DD-Payne), which inherits essential ingredients from both the Payne and the Cannon. It is a data-driven model that incorporates constraints from theoretical spectral models to ensure the derived abundance estimates are physically sensible. Stars in LAMOST DR5 that are in common with either GALAH DR2 or APOGEE DR14 are used to train a model that delivers stellar parameters (Teff, log g, Vmic) and abundances for 16 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Ba) over a metallicity range of −4 dex &lt; [Fe/H] &lt; 0.6 dex when applied to the LAMOST spectra. Cross-validation and repeat observations suggest that, for S/Npixel ≥ 50, the typical internal abundance precision is 0.03-0.1 dex for the majority of these elements, with 0.2-0.3 dex for Cu and Ba, and the internal precision of Teff and log g is better than 30 K and 0.07 dex, respectively. Abundance systematics at the ∼0.1 dex level are present in these estimates but are inherited from the high-resolution surveys' training labels. For some elements, GALAH provides more robust training labels, for others, APOGEE. We provide flags to guide the quality of the label determination and identify binary/multiple stars in LAMOST DR5. An electronic version of the abundance catalog is made publicly available.12</abstract><cop>Saskatoon</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4365/ab5364</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-5818-8769</orcidid><orcidid>https://orcid.org/0000-0001-5082-9536</orcidid><orcidid>https://orcid.org/0000-0003-4996-9069</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0067-0049
ispartof The Astrophysical journal. Supplement series, 2019-12, Vol.245 (2), p.34
issn 0067-0049
1538-4365
1538-4365
language eng
recordid cdi_proquest_journals_2357612630
source IOP Publishing Free Content
subjects Abundance
Aluminum
Astronomy data analysis
Astronomy data modeling
Astronomy databases
Barium
Binary stars
Chromium
Constraint modelling
Copper
Estimates
Fundamental parameters of stars
Iron
Labels
Magnesium
Manganese
Metallicity
Milky Way Galaxy
Nickel
Parameters
Silicon
Sky surveys
Spectra
Spectroscopic binary stars
Spectroscopy
Stars
Stellar abundances
Stellar atmospheres
Stellar models
Stellar properties
Stellar spectral lines
Systematics
Titanium
Training
title Abundance Estimates for 16 Elements in 6 Million Stars from LAMOST DR5 Low-Resolution Spectra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abundance%20Estimates%20for%2016%20Elements%20in%206%20Million%20Stars%20from%20LAMOST%20DR5%20Low-Resolution%20Spectra&rft.jtitle=The%20Astrophysical%20journal.%20Supplement%20series&rft.au=Xiang,%20Maosheng&rft.date=2019-12-01&rft.volume=245&rft.issue=2&rft.spage=34&rft.pages=34-&rft.issn=0067-0049&rft.eissn=1538-4365&rft_id=info:doi/10.3847/1538-4365/ab5364&rft_dat=%3Cproquest_O3W%3E2357612630%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357612630&rft_id=info:pmid/&rfr_iscdi=true