A criterion for semiampleness

We suggest a sufficient condition for the existence of a morphism from a diagram of quasipolarized primary algebraic spaces into a polarized pair. Moreover, we describe diagrams in the category of quasipolarized algebraic spaces such that every finite subdiagram of such a diagram has a morphism into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Izvestiya. Mathematics 2017-08, Vol.81 (4), p.827-887
1. Verfasser: Shokurov, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 887
container_issue 4
container_start_page 827
container_title Izvestiya. Mathematics
container_volume 81
creator Shokurov, V. V.
description We suggest a sufficient condition for the existence of a morphism from a diagram of quasipolarized primary algebraic spaces into a polarized pair. Moreover, we describe diagrams in the category of quasipolarized algebraic spaces such that every finite subdiagram of such a diagram has a morphism into a polarized pair and all fine subdiagrams which are closed under inclusions and under skrepas have a polarized colimit. Such diagrams are called sobors, and their arrows are inclusions and skrepas. The main application is a criterion for the semiampleness of a nef invertible sheaf on a complete algebraic space in terms of a sobor.
doi_str_mv 10.1070/IM8438
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2357612587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357612587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-7104e087f12e7accb52747eca722b670c80d89268ea76013a7cfcbebca4805c03</originalsourceid><addsrcrecordid>eNpdz09Lw0AQBfBFFKxVv4EQFLxFZ_9kZzyWUrVQ8aLnZbNOIKXNxt304Lc3EkHwNHP48R5PiEsJdxIQ7tcvZDQdiZk0lkpDEo7HH6wpK6vVqTjLeQsAxkg9E1eLIqR24NTGrmhiKjLvW7_vd9xxzufipPG7zBe_dy7eH1dvy-dy8_q0Xi42ZVBIQ4kSDANhIxWjD6GuFBrk4FGp2iIEgg96UJbYowWpPYYm1FwHbwiqAHoubqbcPsXPA-fBbeMhdWOlU7pCK1VFOKrbSYUUc07cuD61e5--nAT3M91N00d4PcE29n9J_9A33ZBTgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357612587</pqid></control><display><type>article</type><title>A criterion for semiampleness</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Shokurov, V. V.</creator><creatorcontrib>Shokurov, V. V.</creatorcontrib><description>We suggest a sufficient condition for the existence of a morphism from a diagram of quasipolarized primary algebraic spaces into a polarized pair. Moreover, we describe diagrams in the category of quasipolarized algebraic spaces such that every finite subdiagram of such a diagram has a morphism into a polarized pair and all fine subdiagrams which are closed under inclusions and under skrepas have a polarized colimit. Such diagrams are called sobors, and their arrows are inclusions and skrepas. The main application is a criterion for the semiampleness of a nef invertible sheaf on a complete algebraic space in terms of a sobor.</description><identifier>ISSN: 1064-5632</identifier><identifier>EISSN: 1468-4810</identifier><identifier>DOI: 10.1070/IM8438</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Algebra ; big ; colimit ; Criteria ; Inclusions ; nef ; semiampleness ; skrepa ; sobor</subject><ispartof>Izvestiya. Mathematics, 2017-08, Vol.81 (4), p.827-887</ispartof><rights>2017 RAS(DoM) and LMS</rights><rights>Copyright IOP Publishing Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-7104e087f12e7accb52747eca722b670c80d89268ea76013a7cfcbebca4805c03</citedby><cites>FETCH-LOGICAL-c278t-7104e087f12e7accb52747eca722b670c80d89268ea76013a7cfcbebca4805c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/IM8438/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821</link.rule.ids></links><search><creatorcontrib>Shokurov, V. V.</creatorcontrib><title>A criterion for semiampleness</title><title>Izvestiya. Mathematics</title><addtitle>IZV</addtitle><addtitle>Izv. Math</addtitle><description>We suggest a sufficient condition for the existence of a morphism from a diagram of quasipolarized primary algebraic spaces into a polarized pair. Moreover, we describe diagrams in the category of quasipolarized algebraic spaces such that every finite subdiagram of such a diagram has a morphism into a polarized pair and all fine subdiagrams which are closed under inclusions and under skrepas have a polarized colimit. Such diagrams are called sobors, and their arrows are inclusions and skrepas. The main application is a criterion for the semiampleness of a nef invertible sheaf on a complete algebraic space in terms of a sobor.</description><subject>Algebra</subject><subject>big</subject><subject>colimit</subject><subject>Criteria</subject><subject>Inclusions</subject><subject>nef</subject><subject>semiampleness</subject><subject>skrepa</subject><subject>sobor</subject><issn>1064-5632</issn><issn>1468-4810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdz09Lw0AQBfBFFKxVv4EQFLxFZ_9kZzyWUrVQ8aLnZbNOIKXNxt304Lc3EkHwNHP48R5PiEsJdxIQ7tcvZDQdiZk0lkpDEo7HH6wpK6vVqTjLeQsAxkg9E1eLIqR24NTGrmhiKjLvW7_vd9xxzufipPG7zBe_dy7eH1dvy-dy8_q0Xi42ZVBIQ4kSDANhIxWjD6GuFBrk4FGp2iIEgg96UJbYowWpPYYm1FwHbwiqAHoubqbcPsXPA-fBbeMhdWOlU7pCK1VFOKrbSYUUc07cuD61e5--nAT3M91N00d4PcE29n9J_9A33ZBTgg</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Shokurov, V. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170801</creationdate><title>A criterion for semiampleness</title><author>Shokurov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-7104e087f12e7accb52747eca722b670c80d89268ea76013a7cfcbebca4805c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>big</topic><topic>colimit</topic><topic>Criteria</topic><topic>Inclusions</topic><topic>nef</topic><topic>semiampleness</topic><topic>skrepa</topic><topic>sobor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shokurov, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Izvestiya. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shokurov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A criterion for semiampleness</atitle><jtitle>Izvestiya. Mathematics</jtitle><stitle>IZV</stitle><addtitle>Izv. Math</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>81</volume><issue>4</issue><spage>827</spage><epage>887</epage><pages>827-887</pages><issn>1064-5632</issn><eissn>1468-4810</eissn><abstract>We suggest a sufficient condition for the existence of a morphism from a diagram of quasipolarized primary algebraic spaces into a polarized pair. Moreover, we describe diagrams in the category of quasipolarized algebraic spaces such that every finite subdiagram of such a diagram has a morphism into a polarized pair and all fine subdiagrams which are closed under inclusions and under skrepas have a polarized colimit. Such diagrams are called sobors, and their arrows are inclusions and skrepas. The main application is a criterion for the semiampleness of a nef invertible sheaf on a complete algebraic space in terms of a sobor.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/IM8438</doi><tpages>61</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5632
ispartof Izvestiya. Mathematics, 2017-08, Vol.81 (4), p.827-887
issn 1064-5632
1468-4810
language eng
recordid cdi_proquest_journals_2357612587
source IOP Publishing Journals; Alma/SFX Local Collection
subjects Algebra
big
colimit
Criteria
Inclusions
nef
semiampleness
skrepa
sobor
title A criterion for semiampleness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20criterion%20for%20semiampleness&rft.jtitle=Izvestiya.%20Mathematics&rft.au=Shokurov,%20V.%20V.&rft.date=2017-08-01&rft.volume=81&rft.issue=4&rft.spage=827&rft.epage=887&rft.pages=827-887&rft.issn=1064-5632&rft.eissn=1468-4810&rft_id=info:doi/10.1070/IM8438&rft_dat=%3Cproquest_iop_j%3E2357612587%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357612587&rft_id=info:pmid/&rfr_iscdi=true