A neural network approach for datum selection in computer-aided process planning

The goal of process planning is to convert design specifications into manufacturing instructions to make products within the specifications at the lowest cost. Therefore, for a computer-aided process planning system (CAPP) to generate a feasible and economical process plan, the tolerance information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in industry 1995-09, Vol.27 (1), p.53-64
Hauptverfasser: Mei, Jiannan, Zhang, Hong-C., Oldham, William J.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 1
container_start_page 53
container_title Computers in industry
container_volume 27
creator Mei, Jiannan
Zhang, Hong-C.
Oldham, William J.B.
description The goal of process planning is to convert design specifications into manufacturing instructions to make products within the specifications at the lowest cost. Therefore, for a computer-aided process planning system (CAPP) to generate a feasible and economical process plan, the tolerance information from design and manufacturing processes must be carefully studied. The geometric tolerances are usually specified in design only when higher accuracy of a feature (such as flatness, roundness, etc.) or a relationship (such as parallelism, perpendicularity, etc.) is required. For the relationships with dimensional tolerances or geometric tolerances with specified design datum(s), the selection of manufacturing datum and setup in process planning plays a very important role to make parts precisely and economically. This paper presents a neural network approach for CAPP to automatically select manufacturing datums for rotational parts on the basis of the shape of the parts and tolerance constraints. A back-propagation algorithm is used and some experiments are conducted. The results are analyzed and further research is proposed.
doi_str_mv 10.1016/0166-3615(95)00006-P
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_235760847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016636159500006P</els_id><sourcerecordid>8647918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c6e7b1ea40586c187e6efbe139eb794d3de8742726b51c687df7391088394ce43</originalsourceid><addsrcrecordid>eNp9kEtLxDAQgIMouK7-Aw9BPOihmjRpkl6EZfEFC-5BzyFNp5q1m9akVfz3Zl3ZowPDXL55fQidUnJFCRXXKUXGBC0uyuKSpBDZcg9NqJJ5JmjJ99FkhxyioxhXG0hKMUHLGfYwBtOmMnx14R2bvg-dsW-46QKuzTCucYQW7OA6j53Htlv34wAhM66GGifYQoy4b433zr8eo4PGtBFO_uoUvdzdPs8fssXT_eN8tsgsE2TIrABZUTCcFErYdCkIaCqgrIRKlrxmNSjJc5mLqqBWKFk3kpWUKMVKboGzKTrbzk0HfIwQB73qxuDTSp2zQgqiuEwQ30I2dDEGaHQf3NqEb02J3qjTGy9640WXhf5Vp5ep7fxvtonWtE0w3rq462WiJDlRCbvZYpD-_HQQdLQOvIXaheRL1537f88PIuqB5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235760847</pqid></control><display><type>article</type><title>A neural network approach for datum selection in computer-aided process planning</title><source>Elsevier ScienceDirect Journals</source><creator>Mei, Jiannan ; Zhang, Hong-C. ; Oldham, William J.B.</creator><creatorcontrib>Mei, Jiannan ; Zhang, Hong-C. ; Oldham, William J.B.</creatorcontrib><description>The goal of process planning is to convert design specifications into manufacturing instructions to make products within the specifications at the lowest cost. Therefore, for a computer-aided process planning system (CAPP) to generate a feasible and economical process plan, the tolerance information from design and manufacturing processes must be carefully studied. The geometric tolerances are usually specified in design only when higher accuracy of a feature (such as flatness, roundness, etc.) or a relationship (such as parallelism, perpendicularity, etc.) is required. For the relationships with dimensional tolerances or geometric tolerances with specified design datum(s), the selection of manufacturing datum and setup in process planning plays a very important role to make parts precisely and economically. This paper presents a neural network approach for CAPP to automatically select manufacturing datums for rotational parts on the basis of the shape of the parts and tolerance constraints. A back-propagation algorithm is used and some experiments are conducted. The results are analyzed and further research is proposed.</description><identifier>ISSN: 0166-3615</identifier><identifier>EISSN: 1872-6194</identifier><identifier>DOI: 10.1016/0166-3615(95)00006-P</identifier><identifier>CODEN: CINUD4</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Applied sciences ; CAM ; Computer aided manufacturing ; Design specifications ; Exact sciences and technology ; Manufacturing ; Mechanical engineering. Machine design ; Neural networks ; Process planning ; Selection ; Specifications ; Studies</subject><ispartof>Computers in industry, 1995-09, Vol.27 (1), p.53-64</ispartof><rights>1995</rights><rights>1995 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Sep 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-c6e7b1ea40586c187e6efbe139eb794d3de8742726b51c687df7391088394ce43</citedby><cites>FETCH-LOGICAL-c360t-c6e7b1ea40586c187e6efbe139eb794d3de8742726b51c687df7391088394ce43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/016636159500006P$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3690208$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Jiannan</creatorcontrib><creatorcontrib>Zhang, Hong-C.</creatorcontrib><creatorcontrib>Oldham, William J.B.</creatorcontrib><title>A neural network approach for datum selection in computer-aided process planning</title><title>Computers in industry</title><description>The goal of process planning is to convert design specifications into manufacturing instructions to make products within the specifications at the lowest cost. Therefore, for a computer-aided process planning system (CAPP) to generate a feasible and economical process plan, the tolerance information from design and manufacturing processes must be carefully studied. The geometric tolerances are usually specified in design only when higher accuracy of a feature (such as flatness, roundness, etc.) or a relationship (such as parallelism, perpendicularity, etc.) is required. For the relationships with dimensional tolerances or geometric tolerances with specified design datum(s), the selection of manufacturing datum and setup in process planning plays a very important role to make parts precisely and economically. This paper presents a neural network approach for CAPP to automatically select manufacturing datums for rotational parts on the basis of the shape of the parts and tolerance constraints. A back-propagation algorithm is used and some experiments are conducted. The results are analyzed and further research is proposed.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>CAM</subject><subject>Computer aided manufacturing</subject><subject>Design specifications</subject><subject>Exact sciences and technology</subject><subject>Manufacturing</subject><subject>Mechanical engineering. Machine design</subject><subject>Neural networks</subject><subject>Process planning</subject><subject>Selection</subject><subject>Specifications</subject><subject>Studies</subject><issn>0166-3615</issn><issn>1872-6194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQgIMouK7-Aw9BPOihmjRpkl6EZfEFC-5BzyFNp5q1m9akVfz3Zl3ZowPDXL55fQidUnJFCRXXKUXGBC0uyuKSpBDZcg9NqJJ5JmjJ99FkhxyioxhXG0hKMUHLGfYwBtOmMnx14R2bvg-dsW-46QKuzTCucYQW7OA6j53Htlv34wAhM66GGifYQoy4b433zr8eo4PGtBFO_uoUvdzdPs8fssXT_eN8tsgsE2TIrABZUTCcFErYdCkIaCqgrIRKlrxmNSjJc5mLqqBWKFk3kpWUKMVKboGzKTrbzk0HfIwQB73qxuDTSp2zQgqiuEwQ30I2dDEGaHQf3NqEb02J3qjTGy9640WXhf5Vp5ep7fxvtonWtE0w3rq462WiJDlRCbvZYpD-_HQQdLQOvIXaheRL1537f88PIuqB5Q</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>Mei, Jiannan</creator><creator>Zhang, Hong-C.</creator><creator>Oldham, William J.B.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950901</creationdate><title>A neural network approach for datum selection in computer-aided process planning</title><author>Mei, Jiannan ; Zhang, Hong-C. ; Oldham, William J.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c6e7b1ea40586c187e6efbe139eb794d3de8742726b51c687df7391088394ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>CAM</topic><topic>Computer aided manufacturing</topic><topic>Design specifications</topic><topic>Exact sciences and technology</topic><topic>Manufacturing</topic><topic>Mechanical engineering. Machine design</topic><topic>Neural networks</topic><topic>Process planning</topic><topic>Selection</topic><topic>Specifications</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Jiannan</creatorcontrib><creatorcontrib>Zhang, Hong-C.</creatorcontrib><creatorcontrib>Oldham, William J.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers in industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Jiannan</au><au>Zhang, Hong-C.</au><au>Oldham, William J.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network approach for datum selection in computer-aided process planning</atitle><jtitle>Computers in industry</jtitle><date>1995-09-01</date><risdate>1995</risdate><volume>27</volume><issue>1</issue><spage>53</spage><epage>64</epage><pages>53-64</pages><issn>0166-3615</issn><eissn>1872-6194</eissn><coden>CINUD4</coden><abstract>The goal of process planning is to convert design specifications into manufacturing instructions to make products within the specifications at the lowest cost. Therefore, for a computer-aided process planning system (CAPP) to generate a feasible and economical process plan, the tolerance information from design and manufacturing processes must be carefully studied. The geometric tolerances are usually specified in design only when higher accuracy of a feature (such as flatness, roundness, etc.) or a relationship (such as parallelism, perpendicularity, etc.) is required. For the relationships with dimensional tolerances or geometric tolerances with specified design datum(s), the selection of manufacturing datum and setup in process planning plays a very important role to make parts precisely and economically. This paper presents a neural network approach for CAPP to automatically select manufacturing datums for rotational parts on the basis of the shape of the parts and tolerance constraints. A back-propagation algorithm is used and some experiments are conducted. The results are analyzed and further research is proposed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0166-3615(95)00006-P</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-3615
ispartof Computers in industry, 1995-09, Vol.27 (1), p.53-64
issn 0166-3615
1872-6194
language eng
recordid cdi_proquest_journals_235760847
source Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
CAM
Computer aided manufacturing
Design specifications
Exact sciences and technology
Manufacturing
Mechanical engineering. Machine design
Neural networks
Process planning
Selection
Specifications
Studies
title A neural network approach for datum selection in computer-aided process planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A34%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20approach%20for%20datum%20selection%20in%20computer-aided%20process%20planning&rft.jtitle=Computers%20in%20industry&rft.au=Mei,%20Jiannan&rft.date=1995-09-01&rft.volume=27&rft.issue=1&rft.spage=53&rft.epage=64&rft.pages=53-64&rft.issn=0166-3615&rft.eissn=1872-6194&rft.coden=CINUD4&rft_id=info:doi/10.1016/0166-3615(95)00006-P&rft_dat=%3Cproquest_cross%3E8647918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=235760847&rft_id=info:pmid/&rft_els_id=016636159500006P&rfr_iscdi=true