Graph-manifolds and integrable Hamiltonian systems

We study the topology of the three-dimensional constant- energy manifolds of integrable Hamiltonian systems realizable in the form of a special class of so-called `molecules'. Namely, for this class of manifolds the Reidemeister torsion is calculated in terms of the Fomenko-Zieschang invariants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2018-05, Vol.209 (5), p.739-758
1. Verfasser: Solodskikh, K. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the topology of the three-dimensional constant- energy manifolds of integrable Hamiltonian systems realizable in the form of a special class of so-called `molecules'. Namely, for this class of manifolds the Reidemeister torsion is calculated in terms of the Fomenko-Zieschang invariants. A connection between the torsion of a constant-energy manifold and stable periodic trajectories is found. Bibliography: 17 titles.
ISSN:1064-5616
1468-4802
DOI:10.1070/SM8946