Model-independent Reconstruction of f(T) Gravity from Gaussian Processes

We apply Gaussian processes and Hubble function data in f(T) cosmology to reconstruct for the first time the f(T) form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as from the method of radial baryon acoustic oscillations, alongside the late...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-01, Vol.888 (2), p.62
Hauptverfasser: Cai, Yi-Fu, Khurshudyan, Martiros, Saridakis, Emmanuel N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 62
container_title The Astrophysical journal
container_volume 888
creator Cai, Yi-Fu
Khurshudyan, Martiros
Saridakis, Emmanuel N.
description We apply Gaussian processes and Hubble function data in f(T) cosmology to reconstruct for the first time the f(T) form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as from the method of radial baryon acoustic oscillations, alongside the latest released local value of H0 = 73.52 1.62 km s−1 Mpc−1, we reconstruct H(z) and its derivatives, resulting eventually in a reconstructed region for f(T), without any assumption. Although the cosmological constant lies in the central part of the reconstructed region, the obtained mean curve follows a quadratic function. Inspired by this we propose a new f(T) parameterization, i.e., f(T) = −2Λ + T2, with the sole free parameter that quantifies the deviation from ΛCDM cosmology. Additionally, we confront three viable one-parameter f(T) models from the literature, which are the power-law, the square-root exponential, and the exponential models, with the reconstructed f(T) region, and then we extract significantly improved constraints for their model parameters, comparing to the constraints that arise from the usual observational analysis. Finally, we argue that since we are using the direct Hubble measurements and the local value for H0 in our analysis, the H0 tension can be efficiently alleviated with the above reconstruction of f(T).
doi_str_mv 10.3847/1538-4357/ab5a7f
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2357575139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357575139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-1a82e74b2691e04d7332525483219a4bb6085e14b5b41e6805dfe1e85ba98db83</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePQa8KFg3n216lEW7wooiK3gLSTuBLrtNTVph_70tFT3JwAwzvPMO8yB0SckdVyJbUMlVIrjMFsZKk7kjNPsdHaMZIUQkKc8-TtFZjNuxZXk-Q6tnX8EuqZsKWhhS0-E3KH0Tu9CXXe0b7B1215sbXATzVXcH7ILf48L0Mdamwa_BlxAjxHN04swuwsVPnaP3x4fNcpWsX4qn5f06KQVNu4QaxSATlqU5BSKqjHMmmRSKM5obYW1KlAQqrLSCQqqIrBxQUNKaXFVW8Tm6mnzb4D97iJ3e-j40w0nNhleHoDwfVGRSlcHHGMDpNtR7Ew6aEj3y0iMcPcLRE69h5XZaqX375_mv_BvFGGtK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357575139</pqid></control><display><type>article</type><title>Model-independent Reconstruction of f(T) Gravity from Gaussian Processes</title><source>Institute of Physics Open Access Journal Titles</source><creator>Cai, Yi-Fu ; Khurshudyan, Martiros ; Saridakis, Emmanuel N.</creator><creatorcontrib>Cai, Yi-Fu ; Khurshudyan, Martiros ; Saridakis, Emmanuel N.</creatorcontrib><description>We apply Gaussian processes and Hubble function data in f(T) cosmology to reconstruct for the first time the f(T) form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as from the method of radial baryon acoustic oscillations, alongside the latest released local value of H0 = 73.52 1.62 km s−1 Mpc−1, we reconstruct H(z) and its derivatives, resulting eventually in a reconstructed region for f(T), without any assumption. Although the cosmological constant lies in the central part of the reconstructed region, the obtained mean curve follows a quadratic function. Inspired by this we propose a new f(T) parameterization, i.e., f(T) = −2Λ + T2, with the sole free parameter that quantifies the deviation from ΛCDM cosmology. Additionally, we confront three viable one-parameter f(T) models from the literature, which are the power-law, the square-root exponential, and the exponential models, with the reconstructed f(T) region, and then we extract significantly improved constraints for their model parameters, comparing to the constraints that arise from the usual observational analysis. Finally, we argue that since we are using the direct Hubble measurements and the local value for H0 in our analysis, the H0 tension can be efficiently alleviated with the above reconstruction of f(T).</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab5a7f</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical models ; Astrophysics ; Chronometers ; Constraint modelling ; Cosmological constant ; Cosmology ; Gaussian process ; Gaussian Processes regression ; Measuring instruments ; Parameterization ; Parameters ; Power law ; Quadratic equations ; Reconstruction</subject><ispartof>The Astrophysical journal, 2020-01, Vol.888 (2), p.62</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-1a82e74b2691e04d7332525483219a4bb6085e14b5b41e6805dfe1e85ba98db83</citedby><cites>FETCH-LOGICAL-c416t-1a82e74b2691e04d7332525483219a4bb6085e14b5b41e6805dfe1e85ba98db83</cites><orcidid>0000-0003-0706-8465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab5a7f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab5a7f$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Cai, Yi-Fu</creatorcontrib><creatorcontrib>Khurshudyan, Martiros</creatorcontrib><creatorcontrib>Saridakis, Emmanuel N.</creatorcontrib><title>Model-independent Reconstruction of f(T) Gravity from Gaussian Processes</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We apply Gaussian processes and Hubble function data in f(T) cosmology to reconstruct for the first time the f(T) form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as from the method of radial baryon acoustic oscillations, alongside the latest released local value of H0 = 73.52 1.62 km s−1 Mpc−1, we reconstruct H(z) and its derivatives, resulting eventually in a reconstructed region for f(T), without any assumption. Although the cosmological constant lies in the central part of the reconstructed region, the obtained mean curve follows a quadratic function. Inspired by this we propose a new f(T) parameterization, i.e., f(T) = −2Λ + T2, with the sole free parameter that quantifies the deviation from ΛCDM cosmology. Additionally, we confront three viable one-parameter f(T) models from the literature, which are the power-law, the square-root exponential, and the exponential models, with the reconstructed f(T) region, and then we extract significantly improved constraints for their model parameters, comparing to the constraints that arise from the usual observational analysis. Finally, we argue that since we are using the direct Hubble measurements and the local value for H0 in our analysis, the H0 tension can be efficiently alleviated with the above reconstruction of f(T).</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Chronometers</subject><subject>Constraint modelling</subject><subject>Cosmological constant</subject><subject>Cosmology</subject><subject>Gaussian process</subject><subject>Gaussian Processes regression</subject><subject>Measuring instruments</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Power law</subject><subject>Quadratic equations</subject><subject>Reconstruction</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePQa8KFg3n216lEW7wooiK3gLSTuBLrtNTVph_70tFT3JwAwzvPMO8yB0SckdVyJbUMlVIrjMFsZKk7kjNPsdHaMZIUQkKc8-TtFZjNuxZXk-Q6tnX8EuqZsKWhhS0-E3KH0Tu9CXXe0b7B1215sbXATzVXcH7ILf48L0Mdamwa_BlxAjxHN04swuwsVPnaP3x4fNcpWsX4qn5f06KQVNu4QaxSATlqU5BSKqjHMmmRSKM5obYW1KlAQqrLSCQqqIrBxQUNKaXFVW8Tm6mnzb4D97iJ3e-j40w0nNhleHoDwfVGRSlcHHGMDpNtR7Ew6aEj3y0iMcPcLRE69h5XZaqX375_mv_BvFGGtK</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Cai, Yi-Fu</creator><creator>Khurshudyan, Martiros</creator><creator>Saridakis, Emmanuel N.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0706-8465</orcidid></search><sort><creationdate>20200110</creationdate><title>Model-independent Reconstruction of f(T) Gravity from Gaussian Processes</title><author>Cai, Yi-Fu ; Khurshudyan, Martiros ; Saridakis, Emmanuel N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-1a82e74b2691e04d7332525483219a4bb6085e14b5b41e6805dfe1e85ba98db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Chronometers</topic><topic>Constraint modelling</topic><topic>Cosmological constant</topic><topic>Cosmology</topic><topic>Gaussian process</topic><topic>Gaussian Processes regression</topic><topic>Measuring instruments</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Power law</topic><topic>Quadratic equations</topic><topic>Reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Yi-Fu</creatorcontrib><creatorcontrib>Khurshudyan, Martiros</creatorcontrib><creatorcontrib>Saridakis, Emmanuel N.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Yi-Fu</au><au>Khurshudyan, Martiros</au><au>Saridakis, Emmanuel N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-independent Reconstruction of f(T) Gravity from Gaussian Processes</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-01-10</date><risdate>2020</risdate><volume>888</volume><issue>2</issue><spage>62</spage><pages>62-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We apply Gaussian processes and Hubble function data in f(T) cosmology to reconstruct for the first time the f(T) form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as from the method of radial baryon acoustic oscillations, alongside the latest released local value of H0 = 73.52 1.62 km s−1 Mpc−1, we reconstruct H(z) and its derivatives, resulting eventually in a reconstructed region for f(T), without any assumption. Although the cosmological constant lies in the central part of the reconstructed region, the obtained mean curve follows a quadratic function. Inspired by this we propose a new f(T) parameterization, i.e., f(T) = −2Λ + T2, with the sole free parameter that quantifies the deviation from ΛCDM cosmology. Additionally, we confront three viable one-parameter f(T) models from the literature, which are the power-law, the square-root exponential, and the exponential models, with the reconstructed f(T) region, and then we extract significantly improved constraints for their model parameters, comparing to the constraints that arise from the usual observational analysis. Finally, we argue that since we are using the direct Hubble measurements and the local value for H0 in our analysis, the H0 tension can be efficiently alleviated with the above reconstruction of f(T).</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab5a7f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0706-8465</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-01, Vol.888 (2), p.62
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2357575139
source Institute of Physics Open Access Journal Titles
subjects Astronomical models
Astrophysics
Chronometers
Constraint modelling
Cosmological constant
Cosmology
Gaussian process
Gaussian Processes regression
Measuring instruments
Parameterization
Parameters
Power law
Quadratic equations
Reconstruction
title Model-independent Reconstruction of f(T) Gravity from Gaussian Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-independent%20Reconstruction%20of%20f(T)%20Gravity%20from%20Gaussian%20Processes&rft.jtitle=The%20Astrophysical%20journal&rft.au=Cai,%20Yi-Fu&rft.date=2020-01-10&rft.volume=888&rft.issue=2&rft.spage=62&rft.pages=62-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab5a7f&rft_dat=%3Cproquest_O3W%3E2357575139%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357575139&rft_id=info:pmid/&rfr_iscdi=true