Model-independent Reconstruction of f(T) Gravity from Gaussian Processes
We apply Gaussian processes and Hubble function data in f(T) cosmology to reconstruct for the first time the f(T) form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as from the method of radial baryon acoustic oscillations, alongside the late...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-01, Vol.888 (2), p.62 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 62 |
container_title | The Astrophysical journal |
container_volume | 888 |
creator | Cai, Yi-Fu Khurshudyan, Martiros Saridakis, Emmanuel N. |
description | We apply Gaussian processes and Hubble function data in f(T) cosmology to reconstruct for the first time the f(T) form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as from the method of radial baryon acoustic oscillations, alongside the latest released local value of H0 = 73.52 1.62 km s−1 Mpc−1, we reconstruct H(z) and its derivatives, resulting eventually in a reconstructed region for f(T), without any assumption. Although the cosmological constant lies in the central part of the reconstructed region, the obtained mean curve follows a quadratic function. Inspired by this we propose a new f(T) parameterization, i.e., f(T) = −2Λ + T2, with the sole free parameter that quantifies the deviation from ΛCDM cosmology. Additionally, we confront three viable one-parameter f(T) models from the literature, which are the power-law, the square-root exponential, and the exponential models, with the reconstructed f(T) region, and then we extract significantly improved constraints for their model parameters, comparing to the constraints that arise from the usual observational analysis. Finally, we argue that since we are using the direct Hubble measurements and the local value for H0 in our analysis, the H0 tension can be efficiently alleviated with the above reconstruction of f(T). |
doi_str_mv | 10.3847/1538-4357/ab5a7f |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2357575139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357575139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-1a82e74b2691e04d7332525483219a4bb6085e14b5b41e6805dfe1e85ba98db83</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7ePQa8KFg3n216lEW7wooiK3gLSTuBLrtNTVph_70tFT3JwAwzvPMO8yB0SckdVyJbUMlVIrjMFsZKk7kjNPsdHaMZIUQkKc8-TtFZjNuxZXk-Q6tnX8EuqZsKWhhS0-E3KH0Tu9CXXe0b7B1215sbXATzVXcH7ILf48L0Mdamwa_BlxAjxHN04swuwsVPnaP3x4fNcpWsX4qn5f06KQVNu4QaxSATlqU5BSKqjHMmmRSKM5obYW1KlAQqrLSCQqqIrBxQUNKaXFVW8Tm6mnzb4D97iJ3e-j40w0nNhleHoDwfVGRSlcHHGMDpNtR7Ew6aEj3y0iMcPcLRE69h5XZaqX375_mv_BvFGGtK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357575139</pqid></control><display><type>article</type><title>Model-independent Reconstruction of f(T) Gravity from Gaussian Processes</title><source>Institute of Physics Open Access Journal Titles</source><creator>Cai, Yi-Fu ; Khurshudyan, Martiros ; Saridakis, Emmanuel N.</creator><creatorcontrib>Cai, Yi-Fu ; Khurshudyan, Martiros ; Saridakis, Emmanuel N.</creatorcontrib><description>We apply Gaussian processes and Hubble function data in f(T) cosmology to reconstruct for the first time the f(T) form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as from the method of radial baryon acoustic oscillations, alongside the latest released local value of H0 = 73.52 1.62 km s−1 Mpc−1, we reconstruct H(z) and its derivatives, resulting eventually in a reconstructed region for f(T), without any assumption. Although the cosmological constant lies in the central part of the reconstructed region, the obtained mean curve follows a quadratic function. Inspired by this we propose a new f(T) parameterization, i.e., f(T) = −2Λ + T2, with the sole free parameter that quantifies the deviation from ΛCDM cosmology. Additionally, we confront three viable one-parameter f(T) models from the literature, which are the power-law, the square-root exponential, and the exponential models, with the reconstructed f(T) region, and then we extract significantly improved constraints for their model parameters, comparing to the constraints that arise from the usual observational analysis. Finally, we argue that since we are using the direct Hubble measurements and the local value for H0 in our analysis, the H0 tension can be efficiently alleviated with the above reconstruction of f(T).</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab5a7f</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical models ; Astrophysics ; Chronometers ; Constraint modelling ; Cosmological constant ; Cosmology ; Gaussian process ; Gaussian Processes regression ; Measuring instruments ; Parameterization ; Parameters ; Power law ; Quadratic equations ; Reconstruction</subject><ispartof>The Astrophysical journal, 2020-01, Vol.888 (2), p.62</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Jan 10, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-1a82e74b2691e04d7332525483219a4bb6085e14b5b41e6805dfe1e85ba98db83</citedby><cites>FETCH-LOGICAL-c416t-1a82e74b2691e04d7332525483219a4bb6085e14b5b41e6805dfe1e85ba98db83</cites><orcidid>0000-0003-0706-8465</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab5a7f/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab5a7f$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Cai, Yi-Fu</creatorcontrib><creatorcontrib>Khurshudyan, Martiros</creatorcontrib><creatorcontrib>Saridakis, Emmanuel N.</creatorcontrib><title>Model-independent Reconstruction of f(T) Gravity from Gaussian Processes</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We apply Gaussian processes and Hubble function data in f(T) cosmology to reconstruct for the first time the f(T) form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as from the method of radial baryon acoustic oscillations, alongside the latest released local value of H0 = 73.52 1.62 km s−1 Mpc−1, we reconstruct H(z) and its derivatives, resulting eventually in a reconstructed region for f(T), without any assumption. Although the cosmological constant lies in the central part of the reconstructed region, the obtained mean curve follows a quadratic function. Inspired by this we propose a new f(T) parameterization, i.e., f(T) = −2Λ + T2, with the sole free parameter that quantifies the deviation from ΛCDM cosmology. Additionally, we confront three viable one-parameter f(T) models from the literature, which are the power-law, the square-root exponential, and the exponential models, with the reconstructed f(T) region, and then we extract significantly improved constraints for their model parameters, comparing to the constraints that arise from the usual observational analysis. Finally, we argue that since we are using the direct Hubble measurements and the local value for H0 in our analysis, the H0 tension can be efficiently alleviated with the above reconstruction of f(T).</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Chronometers</subject><subject>Constraint modelling</subject><subject>Cosmological constant</subject><subject>Cosmology</subject><subject>Gaussian process</subject><subject>Gaussian Processes regression</subject><subject>Measuring instruments</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Power law</subject><subject>Quadratic equations</subject><subject>Reconstruction</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7ePQa8KFg3n216lEW7wooiK3gLSTuBLrtNTVph_70tFT3JwAwzvPMO8yB0SckdVyJbUMlVIrjMFsZKk7kjNPsdHaMZIUQkKc8-TtFZjNuxZXk-Q6tnX8EuqZsKWhhS0-E3KH0Tu9CXXe0b7B1215sbXATzVXcH7ILf48L0Mdamwa_BlxAjxHN04swuwsVPnaP3x4fNcpWsX4qn5f06KQVNu4QaxSATlqU5BSKqjHMmmRSKM5obYW1KlAQqrLSCQqqIrBxQUNKaXFVW8Tm6mnzb4D97iJ3e-j40w0nNhleHoDwfVGRSlcHHGMDpNtR7Ew6aEj3y0iMcPcLRE69h5XZaqX375_mv_BvFGGtK</recordid><startdate>20200110</startdate><enddate>20200110</enddate><creator>Cai, Yi-Fu</creator><creator>Khurshudyan, Martiros</creator><creator>Saridakis, Emmanuel N.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0706-8465</orcidid></search><sort><creationdate>20200110</creationdate><title>Model-independent Reconstruction of f(T) Gravity from Gaussian Processes</title><author>Cai, Yi-Fu ; Khurshudyan, Martiros ; Saridakis, Emmanuel N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-1a82e74b2691e04d7332525483219a4bb6085e14b5b41e6805dfe1e85ba98db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Chronometers</topic><topic>Constraint modelling</topic><topic>Cosmological constant</topic><topic>Cosmology</topic><topic>Gaussian process</topic><topic>Gaussian Processes regression</topic><topic>Measuring instruments</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Power law</topic><topic>Quadratic equations</topic><topic>Reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Yi-Fu</creatorcontrib><creatorcontrib>Khurshudyan, Martiros</creatorcontrib><creatorcontrib>Saridakis, Emmanuel N.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Yi-Fu</au><au>Khurshudyan, Martiros</au><au>Saridakis, Emmanuel N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-independent Reconstruction of f(T) Gravity from Gaussian Processes</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-01-10</date><risdate>2020</risdate><volume>888</volume><issue>2</issue><spage>62</spage><pages>62-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We apply Gaussian processes and Hubble function data in f(T) cosmology to reconstruct for the first time the f(T) form in a model-independent way. In particular, using H(z) data sets coming from cosmic chronometers as well as from the method of radial baryon acoustic oscillations, alongside the latest released local value of H0 = 73.52 1.62 km s−1 Mpc−1, we reconstruct H(z) and its derivatives, resulting eventually in a reconstructed region for f(T), without any assumption. Although the cosmological constant lies in the central part of the reconstructed region, the obtained mean curve follows a quadratic function. Inspired by this we propose a new f(T) parameterization, i.e., f(T) = −2Λ + T2, with the sole free parameter that quantifies the deviation from ΛCDM cosmology. Additionally, we confront three viable one-parameter f(T) models from the literature, which are the power-law, the square-root exponential, and the exponential models, with the reconstructed f(T) region, and then we extract significantly improved constraints for their model parameters, comparing to the constraints that arise from the usual observational analysis. Finally, we argue that since we are using the direct Hubble measurements and the local value for H0 in our analysis, the H0 tension can be efficiently alleviated with the above reconstruction of f(T).</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab5a7f</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0706-8465</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-01, Vol.888 (2), p.62 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2357575139 |
source | Institute of Physics Open Access Journal Titles |
subjects | Astronomical models Astrophysics Chronometers Constraint modelling Cosmological constant Cosmology Gaussian process Gaussian Processes regression Measuring instruments Parameterization Parameters Power law Quadratic equations Reconstruction |
title | Model-independent Reconstruction of f(T) Gravity from Gaussian Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-independent%20Reconstruction%20of%20f(T)%20Gravity%20from%20Gaussian%20Processes&rft.jtitle=The%20Astrophysical%20journal&rft.au=Cai,%20Yi-Fu&rft.date=2020-01-10&rft.volume=888&rft.issue=2&rft.spage=62&rft.pages=62-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab5a7f&rft_dat=%3Cproquest_O3W%3E2357575139%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357575139&rft_id=info:pmid/&rfr_iscdi=true |