The CO(3-2)/CO(1-0) Luminosity Line Ratio in Nearby Star-forming Galaxies and Active Galactic Nuclei from xCOLD GASS, BASS, and SLUGS
We study the luminosity line ratio in a sample of nearby (z < 0.05) galaxies: 25 star-forming galaxies (SFGs) from the xCOLD GASS survey, 36 hard X-ray-selected active galactic nucleus (AGN) host galaxies from the BAT AGN Spectroscopic Survey, and 37 infrared-luminous galaxies from the SCUBA Loca...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-02, Vol.889 (2), p.103 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 103 |
container_title | The Astrophysical journal |
container_volume | 889 |
creator | Lamperti, Isabella Saintonge, Amélie Koss, Michael Viti, Serena Wilson, Christine D. He, Hao Shimizu, T. Taro Greve, Thomas R. Mushotzky, Richard Treister, Ezequiel Kramer, Carsten Sanders, David Schawinski, Kevin Tacconi, Linda J. |
description | We study the luminosity line ratio in a sample of nearby (z < 0.05) galaxies: 25 star-forming galaxies (SFGs) from the xCOLD GASS survey, 36 hard X-ray-selected active galactic nucleus (AGN) host galaxies from the BAT AGN Spectroscopic Survey, and 37 infrared-luminous galaxies from the SCUBA Local Universe Galaxy Survey. We find a trend for r31 to increase with star formation efficiency (SFE). We model r31 using the UCL-PDR code and find that the gas density is the main parameter responsible for the variation of r31, while the interstellar radiation field and cosmic-ray ionization rate play only a minor role. We interpret these results to indicate a relation between SFE and gas density. We do not find a difference in the r31 value of SFGs and AGN host galaxies, when the galaxies are matched in SSFR (〈r31〉 = 0.52 0.04 for SFGs and 〈r31〉 = 0.53 0.06 for AGN hosts). According to the results of the UCL-PDR models, the X-rays can contribute to the enhancement of the CO line ratio, but only for strong X-ray fluxes and for high gas density (nH > 104 cm−3). We find a mild tightening of the Kennicutt-Schmidt relation when we use the molecular gas mass surface density traced by CO(3-2) (Pearson correlation coefficient R = 0.83), instead of the molecular gas mass surface density traced by CO(1-0) (R = 0.78), but the increase in correlation is not statistically significant (p-value = 0.06). This suggests that the CO(3-2) line can be reliably used to study the relation between SFR and molecular gas for normal SFGs at high redshift and to compare it with studies of low-redshift galaxies, as is common practice. |
doi_str_mv | 10.3847/1538-4357/ab6221 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2357564247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357564247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-fc3d9a6b8cd2d5e4f2a505dd91352da7abaaf74a90ddfbf658e20b11a317ddb53</originalsourceid><addsrcrecordid>eNp1kF1r2zAUhkXpoGm2-14KRqGFeNGnPy5Tb00HpoG5hd6JY0taFRLblZ3S_ID-78rNWG-2Gx3p8Lyv4EHojJJvPBXJnEqeRoLLZA5VzBg9QpO_q2M0IYSIKObJwwk67fv1-GRZNkGvd48G56sLHrHLeZg0Ipe42G1d0_Zu2OPCNQb_gsG12DX41oCv9rgcwEe29YH6jZewgRdnegyNxot6cM_mfRduNb7d1RvjsPXtFr_kq-I7Xi7Kcoav3s8xURb3y_Iz-mRh05svf-YU3V__uMtvomK1_JkviqgWIh4iW3OdQVyltWZaGmEZSCK1ziiXTEMCFYBNBGREa1vZWKaGkYpS4DTRupJ8ir4eejvfPu1MP6h1u_NN-FKx4EnGgokkUORA1b7te2-s6rzbgt8rStQoW41m1WhWHWSHyPkh4truoxO6tUrTTLEQ5KrTNnCzf3D_rX0DUpqJjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357564247</pqid></control><display><type>article</type><title>The CO(3-2)/CO(1-0) Luminosity Line Ratio in Nearby Star-forming Galaxies and Active Galactic Nuclei from xCOLD GASS, BASS, and SLUGS</title><source>Institute of Physics Open Access Journal Titles</source><creator>Lamperti, Isabella ; Saintonge, Amélie ; Koss, Michael ; Viti, Serena ; Wilson, Christine D. ; He, Hao ; Shimizu, T. Taro ; Greve, Thomas R. ; Mushotzky, Richard ; Treister, Ezequiel ; Kramer, Carsten ; Sanders, David ; Schawinski, Kevin ; Tacconi, Linda J.</creator><creatorcontrib>Lamperti, Isabella ; Saintonge, Amélie ; Koss, Michael ; Viti, Serena ; Wilson, Christine D. ; He, Hao ; Shimizu, T. Taro ; Greve, Thomas R. ; Mushotzky, Richard ; Treister, Ezequiel ; Kramer, Carsten ; Sanders, David ; Schawinski, Kevin ; Tacconi, Linda J.</creatorcontrib><description>We study the luminosity line ratio in a sample of nearby (z < 0.05) galaxies: 25 star-forming galaxies (SFGs) from the xCOLD GASS survey, 36 hard X-ray-selected active galactic nucleus (AGN) host galaxies from the BAT AGN Spectroscopic Survey, and 37 infrared-luminous galaxies from the SCUBA Local Universe Galaxy Survey. We find a trend for r31 to increase with star formation efficiency (SFE). We model r31 using the UCL-PDR code and find that the gas density is the main parameter responsible for the variation of r31, while the interstellar radiation field and cosmic-ray ionization rate play only a minor role. We interpret these results to indicate a relation between SFE and gas density. We do not find a difference in the r31 value of SFGs and AGN host galaxies, when the galaxies are matched in SSFR (〈r31〉 = 0.52 0.04 for SFGs and 〈r31〉 = 0.53 0.06 for AGN hosts). According to the results of the UCL-PDR models, the X-rays can contribute to the enhancement of the CO line ratio, but only for strong X-ray fluxes and for high gas density (nH > 104 cm−3). We find a mild tightening of the Kennicutt-Schmidt relation when we use the molecular gas mass surface density traced by CO(3-2) (Pearson correlation coefficient R = 0.83), instead of the molecular gas mass surface density traced by CO(1-0) (R = 0.78), but the increase in correlation is not statistically significant (p-value = 0.06). This suggests that the CO(3-2) line can be reliably used to study the relation between SFR and molecular gas for normal SFGs at high redshift and to compare it with studies of low-redshift galaxies, as is common practice.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab6221</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Active galactic nuclei ; Astrophysics ; Correlation coefficient ; Cosmic ray ionization ; Density ; Galaxies ; Interstellar medium ; Ionization ; Luminosity ; Polls & surveys ; Seyfert galaxies ; Slugs ; Star & galaxy formation ; Star formation ; Stars & galaxies ; X-ray fluxes ; X-rays</subject><ispartof>The Astrophysical journal, 2020-02, Vol.889 (2), p.103</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Feb 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-fc3d9a6b8cd2d5e4f2a505dd91352da7abaaf74a90ddfbf658e20b11a317ddb53</citedby><cites>FETCH-LOGICAL-c446t-fc3d9a6b8cd2d5e4f2a505dd91352da7abaaf74a90ddfbf658e20b11a317ddb53</cites><orcidid>0000-0003-3336-5498 ; 0000-0001-5817-0991 ; 0000-0001-7568-6412 ; 0000-0002-7998-9581 ; 0000-0001-5464-0888 ; 0000-0003-4357-3450 ; 0000-0002-1485-9401 ; 0000-0002-2125-4670 ; 0000-0002-1233-9998 ; 0000-0002-2554-1837 ; 0000-0002-7962-5446 ; 0000-0001-8504-8844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab6221/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38890,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab6221$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Lamperti, Isabella</creatorcontrib><creatorcontrib>Saintonge, Amélie</creatorcontrib><creatorcontrib>Koss, Michael</creatorcontrib><creatorcontrib>Viti, Serena</creatorcontrib><creatorcontrib>Wilson, Christine D.</creatorcontrib><creatorcontrib>He, Hao</creatorcontrib><creatorcontrib>Shimizu, T. Taro</creatorcontrib><creatorcontrib>Greve, Thomas R.</creatorcontrib><creatorcontrib>Mushotzky, Richard</creatorcontrib><creatorcontrib>Treister, Ezequiel</creatorcontrib><creatorcontrib>Kramer, Carsten</creatorcontrib><creatorcontrib>Sanders, David</creatorcontrib><creatorcontrib>Schawinski, Kevin</creatorcontrib><creatorcontrib>Tacconi, Linda J.</creatorcontrib><title>The CO(3-2)/CO(1-0) Luminosity Line Ratio in Nearby Star-forming Galaxies and Active Galactic Nuclei from xCOLD GASS, BASS, and SLUGS</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We study the luminosity line ratio in a sample of nearby (z < 0.05) galaxies: 25 star-forming galaxies (SFGs) from the xCOLD GASS survey, 36 hard X-ray-selected active galactic nucleus (AGN) host galaxies from the BAT AGN Spectroscopic Survey, and 37 infrared-luminous galaxies from the SCUBA Local Universe Galaxy Survey. We find a trend for r31 to increase with star formation efficiency (SFE). We model r31 using the UCL-PDR code and find that the gas density is the main parameter responsible for the variation of r31, while the interstellar radiation field and cosmic-ray ionization rate play only a minor role. We interpret these results to indicate a relation between SFE and gas density. We do not find a difference in the r31 value of SFGs and AGN host galaxies, when the galaxies are matched in SSFR (〈r31〉 = 0.52 0.04 for SFGs and 〈r31〉 = 0.53 0.06 for AGN hosts). According to the results of the UCL-PDR models, the X-rays can contribute to the enhancement of the CO line ratio, but only for strong X-ray fluxes and for high gas density (nH > 104 cm−3). We find a mild tightening of the Kennicutt-Schmidt relation when we use the molecular gas mass surface density traced by CO(3-2) (Pearson correlation coefficient R = 0.83), instead of the molecular gas mass surface density traced by CO(1-0) (R = 0.78), but the increase in correlation is not statistically significant (p-value = 0.06). This suggests that the CO(3-2) line can be reliably used to study the relation between SFR and molecular gas for normal SFGs at high redshift and to compare it with studies of low-redshift galaxies, as is common practice.</description><subject>Active galactic nuclei</subject><subject>Astrophysics</subject><subject>Correlation coefficient</subject><subject>Cosmic ray ionization</subject><subject>Density</subject><subject>Galaxies</subject><subject>Interstellar medium</subject><subject>Ionization</subject><subject>Luminosity</subject><subject>Polls & surveys</subject><subject>Seyfert galaxies</subject><subject>Slugs</subject><subject>Star & galaxy formation</subject><subject>Star formation</subject><subject>Stars & galaxies</subject><subject>X-ray fluxes</subject><subject>X-rays</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1r2zAUhkXpoGm2-14KRqGFeNGnPy5Tb00HpoG5hd6JY0taFRLblZ3S_ID-78rNWG-2Gx3p8Lyv4EHojJJvPBXJnEqeRoLLZA5VzBg9QpO_q2M0IYSIKObJwwk67fv1-GRZNkGvd48G56sLHrHLeZg0Ipe42G1d0_Zu2OPCNQb_gsG12DX41oCv9rgcwEe29YH6jZewgRdnegyNxot6cM_mfRduNb7d1RvjsPXtFr_kq-I7Xi7Kcoav3s8xURb3y_Iz-mRh05svf-YU3V__uMtvomK1_JkviqgWIh4iW3OdQVyltWZaGmEZSCK1ziiXTEMCFYBNBGREa1vZWKaGkYpS4DTRupJ8ir4eejvfPu1MP6h1u_NN-FKx4EnGgokkUORA1b7te2-s6rzbgt8rStQoW41m1WhWHWSHyPkh4truoxO6tUrTTLEQ5KrTNnCzf3D_rX0DUpqJjg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Lamperti, Isabella</creator><creator>Saintonge, Amélie</creator><creator>Koss, Michael</creator><creator>Viti, Serena</creator><creator>Wilson, Christine D.</creator><creator>He, Hao</creator><creator>Shimizu, T. Taro</creator><creator>Greve, Thomas R.</creator><creator>Mushotzky, Richard</creator><creator>Treister, Ezequiel</creator><creator>Kramer, Carsten</creator><creator>Sanders, David</creator><creator>Schawinski, Kevin</creator><creator>Tacconi, Linda J.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3336-5498</orcidid><orcidid>https://orcid.org/0000-0001-5817-0991</orcidid><orcidid>https://orcid.org/0000-0001-7568-6412</orcidid><orcidid>https://orcid.org/0000-0002-7998-9581</orcidid><orcidid>https://orcid.org/0000-0001-5464-0888</orcidid><orcidid>https://orcid.org/0000-0003-4357-3450</orcidid><orcidid>https://orcid.org/0000-0002-1485-9401</orcidid><orcidid>https://orcid.org/0000-0002-2125-4670</orcidid><orcidid>https://orcid.org/0000-0002-1233-9998</orcidid><orcidid>https://orcid.org/0000-0002-2554-1837</orcidid><orcidid>https://orcid.org/0000-0002-7962-5446</orcidid><orcidid>https://orcid.org/0000-0001-8504-8844</orcidid></search><sort><creationdate>20200201</creationdate><title>The CO(3-2)/CO(1-0) Luminosity Line Ratio in Nearby Star-forming Galaxies and Active Galactic Nuclei from xCOLD GASS, BASS, and SLUGS</title><author>Lamperti, Isabella ; Saintonge, Amélie ; Koss, Michael ; Viti, Serena ; Wilson, Christine D. ; He, Hao ; Shimizu, T. Taro ; Greve, Thomas R. ; Mushotzky, Richard ; Treister, Ezequiel ; Kramer, Carsten ; Sanders, David ; Schawinski, Kevin ; Tacconi, Linda J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-fc3d9a6b8cd2d5e4f2a505dd91352da7abaaf74a90ddfbf658e20b11a317ddb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active galactic nuclei</topic><topic>Astrophysics</topic><topic>Correlation coefficient</topic><topic>Cosmic ray ionization</topic><topic>Density</topic><topic>Galaxies</topic><topic>Interstellar medium</topic><topic>Ionization</topic><topic>Luminosity</topic><topic>Polls & surveys</topic><topic>Seyfert galaxies</topic><topic>Slugs</topic><topic>Star & galaxy formation</topic><topic>Star formation</topic><topic>Stars & galaxies</topic><topic>X-ray fluxes</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamperti, Isabella</creatorcontrib><creatorcontrib>Saintonge, Amélie</creatorcontrib><creatorcontrib>Koss, Michael</creatorcontrib><creatorcontrib>Viti, Serena</creatorcontrib><creatorcontrib>Wilson, Christine D.</creatorcontrib><creatorcontrib>He, Hao</creatorcontrib><creatorcontrib>Shimizu, T. Taro</creatorcontrib><creatorcontrib>Greve, Thomas R.</creatorcontrib><creatorcontrib>Mushotzky, Richard</creatorcontrib><creatorcontrib>Treister, Ezequiel</creatorcontrib><creatorcontrib>Kramer, Carsten</creatorcontrib><creatorcontrib>Sanders, David</creatorcontrib><creatorcontrib>Schawinski, Kevin</creatorcontrib><creatorcontrib>Tacconi, Linda J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lamperti, Isabella</au><au>Saintonge, Amélie</au><au>Koss, Michael</au><au>Viti, Serena</au><au>Wilson, Christine D.</au><au>He, Hao</au><au>Shimizu, T. Taro</au><au>Greve, Thomas R.</au><au>Mushotzky, Richard</au><au>Treister, Ezequiel</au><au>Kramer, Carsten</au><au>Sanders, David</au><au>Schawinski, Kevin</au><au>Tacconi, Linda J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The CO(3-2)/CO(1-0) Luminosity Line Ratio in Nearby Star-forming Galaxies and Active Galactic Nuclei from xCOLD GASS, BASS, and SLUGS</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>889</volume><issue>2</issue><spage>103</spage><pages>103-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We study the luminosity line ratio in a sample of nearby (z < 0.05) galaxies: 25 star-forming galaxies (SFGs) from the xCOLD GASS survey, 36 hard X-ray-selected active galactic nucleus (AGN) host galaxies from the BAT AGN Spectroscopic Survey, and 37 infrared-luminous galaxies from the SCUBA Local Universe Galaxy Survey. We find a trend for r31 to increase with star formation efficiency (SFE). We model r31 using the UCL-PDR code and find that the gas density is the main parameter responsible for the variation of r31, while the interstellar radiation field and cosmic-ray ionization rate play only a minor role. We interpret these results to indicate a relation between SFE and gas density. We do not find a difference in the r31 value of SFGs and AGN host galaxies, when the galaxies are matched in SSFR (〈r31〉 = 0.52 0.04 for SFGs and 〈r31〉 = 0.53 0.06 for AGN hosts). According to the results of the UCL-PDR models, the X-rays can contribute to the enhancement of the CO line ratio, but only for strong X-ray fluxes and for high gas density (nH > 104 cm−3). We find a mild tightening of the Kennicutt-Schmidt relation when we use the molecular gas mass surface density traced by CO(3-2) (Pearson correlation coefficient R = 0.83), instead of the molecular gas mass surface density traced by CO(1-0) (R = 0.78), but the increase in correlation is not statistically significant (p-value = 0.06). This suggests that the CO(3-2) line can be reliably used to study the relation between SFR and molecular gas for normal SFGs at high redshift and to compare it with studies of low-redshift galaxies, as is common practice.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab6221</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3336-5498</orcidid><orcidid>https://orcid.org/0000-0001-5817-0991</orcidid><orcidid>https://orcid.org/0000-0001-7568-6412</orcidid><orcidid>https://orcid.org/0000-0002-7998-9581</orcidid><orcidid>https://orcid.org/0000-0001-5464-0888</orcidid><orcidid>https://orcid.org/0000-0003-4357-3450</orcidid><orcidid>https://orcid.org/0000-0002-1485-9401</orcidid><orcidid>https://orcid.org/0000-0002-2125-4670</orcidid><orcidid>https://orcid.org/0000-0002-1233-9998</orcidid><orcidid>https://orcid.org/0000-0002-2554-1837</orcidid><orcidid>https://orcid.org/0000-0002-7962-5446</orcidid><orcidid>https://orcid.org/0000-0001-8504-8844</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-02, Vol.889 (2), p.103 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2357564247 |
source | Institute of Physics Open Access Journal Titles |
subjects | Active galactic nuclei Astrophysics Correlation coefficient Cosmic ray ionization Density Galaxies Interstellar medium Ionization Luminosity Polls & surveys Seyfert galaxies Slugs Star & galaxy formation Star formation Stars & galaxies X-ray fluxes X-rays |
title | The CO(3-2)/CO(1-0) Luminosity Line Ratio in Nearby Star-forming Galaxies and Active Galactic Nuclei from xCOLD GASS, BASS, and SLUGS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20CO(3-2)/CO(1-0)%20Luminosity%20Line%20Ratio%20in%20Nearby%20Star-forming%20Galaxies%20and%20Active%20Galactic%20Nuclei%20from%20xCOLD%20GASS,%20BASS,%20and%20SLUGS&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lamperti,%20Isabella&rft.date=2020-02-01&rft.volume=889&rft.issue=2&rft.spage=103&rft.pages=103-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab6221&rft_dat=%3Cproquest_O3W%3E2357564247%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357564247&rft_id=info:pmid/&rfr_iscdi=true |