No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets
Planets orbiting within the habitable zones of M stars are prime targets for future observations, which motivates a greater understanding of how tidal locking can affect planetary habitability. In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm cli...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2019-12, Vol.887 (1), p.L3 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | L3 |
container_title | Astrophysical journal. Letters |
container_volume | 887 |
creator | Checlair, Jade H. Salazar, Andrea M. Paradise, Adiv Menou, Kristen Abbot, Dorian S. |
description | Planets orbiting within the habitable zones of M stars are prime targets for future observations, which motivates a greater understanding of how tidal locking can affect planetary habitability. In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm climate states, which has been suggested could occur for rapidly rotating planets in the outer regions of the habitable zone with low CO2 outgassing rates. Here, we use a 3D Global Climate Model that calculates silicate-weathering to show that tidally locked planets with an active carbon cycle will not experience limit cycling between warm and snowball states. Instead, they smoothly settle into "Eyeball" states with a small unglaciated substellar region. The size of this unglaciated region depends on the stellar irradiation, the CO2 outgassing rate, and the continental configuration. Furthermore, we argue that a tidally locked habitable zone planet cannot stay in a snowball state for a geologically significant time. This may be beneficial to the survival of complex life on tidally locked planets orbiting the outer edge of their stars, but might also make it less likely for complex life to arise. |
doi_str_mv | 10.3847/2041-8213/ab5957 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2357564200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357564200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b58bec7d655c52a855ee72c0af4d806092209f00e4b930229047560ecce15eef3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7ePQbEm3WnadOmR1lWVyiu4HrxEtJ0ql1rU5MW2X9va2X1oKcZHt97MzxCTn24DEQYzxiEvieYH8xUxhMe75HJTtrf7cAPyZFzGwAGkS8mRN4Z-lCbj0xVFZ1vdYWOqpa2L0hXXYuWLvJnpKb4UpYqK1uVVUifTI20MPaXtC7zPmNLU6NfMaf3laqxdcfkoFCVw5PvOSWP14v1fOmlq5vb-VXq6UBA62VcZKjjPOJcc6YE54gx06CKMBcQQcIYJAUAhlkSAGMJhDGPALVGv0eLYErOxtzGmvcOXSs3prN1f1KygPdsyAB6CkZKW-OcxUI2tnxTdit9kEONcuhJDp3Jscbecj5aStP8ZKpmU0khYunLNJBNPjxw8Qf3b-wnbPN-fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357564200</pqid></control><display><type>article</type><title>No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets</title><source>IOP Publishing Free Content</source><creator>Checlair, Jade H. ; Salazar, Andrea M. ; Paradise, Adiv ; Menou, Kristen ; Abbot, Dorian S.</creator><creatorcontrib>Checlair, Jade H. ; Salazar, Andrea M. ; Paradise, Adiv ; Menou, Kristen ; Abbot, Dorian S.</creatorcontrib><description>Planets orbiting within the habitable zones of M stars are prime targets for future observations, which motivates a greater understanding of how tidal locking can affect planetary habitability. In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm climate states, which has been suggested could occur for rapidly rotating planets in the outer regions of the habitable zone with low CO2 outgassing rates. Here, we use a 3D Global Climate Model that calculates silicate-weathering to show that tidally locked planets with an active carbon cycle will not experience limit cycling between warm and snowball states. Instead, they smoothly settle into "Eyeball" states with a small unglaciated substellar region. The size of this unglaciated region depends on the stellar irradiation, the CO2 outgassing rate, and the continental configuration. Furthermore, we argue that a tidally locked habitable zone planet cannot stay in a snowball state for a geologically significant time. This may be beneficial to the survival of complex life on tidally locked planets orbiting the outer edge of their stars, but might also make it less likely for complex life to arise.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ab5957</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Activated carbon ; Astrobiology ; Carbon cycle ; Carbon dioxide ; Circumstellar habitable zone ; Climate models ; Cycles ; Exoplanet astronomy ; Exoplanet atmospheres ; Exoplanets ; Global climate ; Global climate models ; Habitability ; Habitable planets ; Irradiation ; Locking ; M stars ; Outgassing ; Planetary rotation ; Planets ; Three dimensional models ; Tidal effects ; Warm climates ; Weathering</subject><ispartof>Astrophysical journal. Letters, 2019-12, Vol.887 (1), p.L3</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b58bec7d655c52a855ee72c0af4d806092209f00e4b930229047560ecce15eef3</citedby><cites>FETCH-LOGICAL-c380t-b58bec7d655c52a855ee72c0af4d806092209f00e4b930229047560ecce15eef3</cites><orcidid>0000-0001-8724-833X ; 0000-0001-6774-7430 ; 0000-0001-8335-6560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab5957/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab5957$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Checlair, Jade H.</creatorcontrib><creatorcontrib>Salazar, Andrea M.</creatorcontrib><creatorcontrib>Paradise, Adiv</creatorcontrib><creatorcontrib>Menou, Kristen</creatorcontrib><creatorcontrib>Abbot, Dorian S.</creatorcontrib><title>No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Planets orbiting within the habitable zones of M stars are prime targets for future observations, which motivates a greater understanding of how tidal locking can affect planetary habitability. In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm climate states, which has been suggested could occur for rapidly rotating planets in the outer regions of the habitable zone with low CO2 outgassing rates. Here, we use a 3D Global Climate Model that calculates silicate-weathering to show that tidally locked planets with an active carbon cycle will not experience limit cycling between warm and snowball states. Instead, they smoothly settle into "Eyeball" states with a small unglaciated substellar region. The size of this unglaciated region depends on the stellar irradiation, the CO2 outgassing rate, and the continental configuration. Furthermore, we argue that a tidally locked habitable zone planet cannot stay in a snowball state for a geologically significant time. This may be beneficial to the survival of complex life on tidally locked planets orbiting the outer edge of their stars, but might also make it less likely for complex life to arise.</description><subject>Activated carbon</subject><subject>Astrobiology</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Circumstellar habitable zone</subject><subject>Climate models</subject><subject>Cycles</subject><subject>Exoplanet astronomy</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanets</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Habitability</subject><subject>Habitable planets</subject><subject>Irradiation</subject><subject>Locking</subject><subject>M stars</subject><subject>Outgassing</subject><subject>Planetary rotation</subject><subject>Planets</subject><subject>Three dimensional models</subject><subject>Tidal effects</subject><subject>Warm climates</subject><subject>Weathering</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7ePQbEm3WnadOmR1lWVyiu4HrxEtJ0ql1rU5MW2X9va2X1oKcZHt97MzxCTn24DEQYzxiEvieYH8xUxhMe75HJTtrf7cAPyZFzGwAGkS8mRN4Z-lCbj0xVFZ1vdYWOqpa2L0hXXYuWLvJnpKb4UpYqK1uVVUifTI20MPaXtC7zPmNLU6NfMaf3laqxdcfkoFCVw5PvOSWP14v1fOmlq5vb-VXq6UBA62VcZKjjPOJcc6YE54gx06CKMBcQQcIYJAUAhlkSAGMJhDGPALVGv0eLYErOxtzGmvcOXSs3prN1f1KygPdsyAB6CkZKW-OcxUI2tnxTdit9kEONcuhJDp3Jscbecj5aStP8ZKpmU0khYunLNJBNPjxw8Qf3b-wnbPN-fg</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Checlair, Jade H.</creator><creator>Salazar, Andrea M.</creator><creator>Paradise, Adiv</creator><creator>Menou, Kristen</creator><creator>Abbot, Dorian S.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8724-833X</orcidid><orcidid>https://orcid.org/0000-0001-6774-7430</orcidid><orcidid>https://orcid.org/0000-0001-8335-6560</orcidid></search><sort><creationdate>20191210</creationdate><title>No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets</title><author>Checlair, Jade H. ; Salazar, Andrea M. ; Paradise, Adiv ; Menou, Kristen ; Abbot, Dorian S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b58bec7d655c52a855ee72c0af4d806092209f00e4b930229047560ecce15eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activated carbon</topic><topic>Astrobiology</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Circumstellar habitable zone</topic><topic>Climate models</topic><topic>Cycles</topic><topic>Exoplanet astronomy</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanets</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Habitability</topic><topic>Habitable planets</topic><topic>Irradiation</topic><topic>Locking</topic><topic>M stars</topic><topic>Outgassing</topic><topic>Planetary rotation</topic><topic>Planets</topic><topic>Three dimensional models</topic><topic>Tidal effects</topic><topic>Warm climates</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Checlair, Jade H.</creatorcontrib><creatorcontrib>Salazar, Andrea M.</creatorcontrib><creatorcontrib>Paradise, Adiv</creatorcontrib><creatorcontrib>Menou, Kristen</creatorcontrib><creatorcontrib>Abbot, Dorian S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Checlair, Jade H.</au><au>Salazar, Andrea M.</au><au>Paradise, Adiv</au><au>Menou, Kristen</au><au>Abbot, Dorian S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>887</volume><issue>1</issue><spage>L3</spage><pages>L3-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Planets orbiting within the habitable zones of M stars are prime targets for future observations, which motivates a greater understanding of how tidal locking can affect planetary habitability. In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm climate states, which has been suggested could occur for rapidly rotating planets in the outer regions of the habitable zone with low CO2 outgassing rates. Here, we use a 3D Global Climate Model that calculates silicate-weathering to show that tidally locked planets with an active carbon cycle will not experience limit cycling between warm and snowball states. Instead, they smoothly settle into "Eyeball" states with a small unglaciated substellar region. The size of this unglaciated region depends on the stellar irradiation, the CO2 outgassing rate, and the continental configuration. Furthermore, we argue that a tidally locked habitable zone planet cannot stay in a snowball state for a geologically significant time. This may be beneficial to the survival of complex life on tidally locked planets orbiting the outer edge of their stars, but might also make it less likely for complex life to arise.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ab5957</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8724-833X</orcidid><orcidid>https://orcid.org/0000-0001-6774-7430</orcidid><orcidid>https://orcid.org/0000-0001-8335-6560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2019-12, Vol.887 (1), p.L3 |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_proquest_journals_2357564200 |
source | IOP Publishing Free Content |
subjects | Activated carbon Astrobiology Carbon cycle Carbon dioxide Circumstellar habitable zone Climate models Cycles Exoplanet astronomy Exoplanet atmospheres Exoplanets Global climate Global climate models Habitability Habitable planets Irradiation Locking M stars Outgassing Planetary rotation Planets Three dimensional models Tidal effects Warm climates Weathering |
title | No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No%20Snowball%20Cycles%20at%20the%20Outer%20Edge%20of%20the%20Habitable%20Zone%20for%20Habitable%20Tidally%20Locked%20Planets&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Checlair,%20Jade%20H.&rft.date=2019-12-10&rft.volume=887&rft.issue=1&rft.spage=L3&rft.pages=L3-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ab5957&rft_dat=%3Cproquest_O3W%3E2357564200%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357564200&rft_id=info:pmid/&rfr_iscdi=true |