No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets

Planets orbiting within the habitable zones of M stars are prime targets for future observations, which motivates a greater understanding of how tidal locking can affect planetary habitability. In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm cli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2019-12, Vol.887 (1), p.L3
Hauptverfasser: Checlair, Jade H., Salazar, Andrea M., Paradise, Adiv, Menou, Kristen, Abbot, Dorian S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page L3
container_title Astrophysical journal. Letters
container_volume 887
creator Checlair, Jade H.
Salazar, Andrea M.
Paradise, Adiv
Menou, Kristen
Abbot, Dorian S.
description Planets orbiting within the habitable zones of M stars are prime targets for future observations, which motivates a greater understanding of how tidal locking can affect planetary habitability. In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm climate states, which has been suggested could occur for rapidly rotating planets in the outer regions of the habitable zone with low CO2 outgassing rates. Here, we use a 3D Global Climate Model that calculates silicate-weathering to show that tidally locked planets with an active carbon cycle will not experience limit cycling between warm and snowball states. Instead, they smoothly settle into "Eyeball" states with a small unglaciated substellar region. The size of this unglaciated region depends on the stellar irradiation, the CO2 outgassing rate, and the continental configuration. Furthermore, we argue that a tidally locked habitable zone planet cannot stay in a snowball state for a geologically significant time. This may be beneficial to the survival of complex life on tidally locked planets orbiting the outer edge of their stars, but might also make it less likely for complex life to arise.
doi_str_mv 10.3847/2041-8213/ab5957
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2357564200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357564200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-b58bec7d655c52a855ee72c0af4d806092209f00e4b930229047560ecce15eef3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7ePQbEm3WnadOmR1lWVyiu4HrxEtJ0ql1rU5MW2X9va2X1oKcZHt97MzxCTn24DEQYzxiEvieYH8xUxhMe75HJTtrf7cAPyZFzGwAGkS8mRN4Z-lCbj0xVFZ1vdYWOqpa2L0hXXYuWLvJnpKb4UpYqK1uVVUifTI20MPaXtC7zPmNLU6NfMaf3laqxdcfkoFCVw5PvOSWP14v1fOmlq5vb-VXq6UBA62VcZKjjPOJcc6YE54gx06CKMBcQQcIYJAUAhlkSAGMJhDGPALVGv0eLYErOxtzGmvcOXSs3prN1f1KygPdsyAB6CkZKW-OcxUI2tnxTdit9kEONcuhJDp3Jscbecj5aStP8ZKpmU0khYunLNJBNPjxw8Qf3b-wnbPN-fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357564200</pqid></control><display><type>article</type><title>No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets</title><source>IOP Publishing Free Content</source><creator>Checlair, Jade H. ; Salazar, Andrea M. ; Paradise, Adiv ; Menou, Kristen ; Abbot, Dorian S.</creator><creatorcontrib>Checlair, Jade H. ; Salazar, Andrea M. ; Paradise, Adiv ; Menou, Kristen ; Abbot, Dorian S.</creatorcontrib><description>Planets orbiting within the habitable zones of M stars are prime targets for future observations, which motivates a greater understanding of how tidal locking can affect planetary habitability. In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm climate states, which has been suggested could occur for rapidly rotating planets in the outer regions of the habitable zone with low CO2 outgassing rates. Here, we use a 3D Global Climate Model that calculates silicate-weathering to show that tidally locked planets with an active carbon cycle will not experience limit cycling between warm and snowball states. Instead, they smoothly settle into "Eyeball" states with a small unglaciated substellar region. The size of this unglaciated region depends on the stellar irradiation, the CO2 outgassing rate, and the continental configuration. Furthermore, we argue that a tidally locked habitable zone planet cannot stay in a snowball state for a geologically significant time. This may be beneficial to the survival of complex life on tidally locked planets orbiting the outer edge of their stars, but might also make it less likely for complex life to arise.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ab5957</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Activated carbon ; Astrobiology ; Carbon cycle ; Carbon dioxide ; Circumstellar habitable zone ; Climate models ; Cycles ; Exoplanet astronomy ; Exoplanet atmospheres ; Exoplanets ; Global climate ; Global climate models ; Habitability ; Habitable planets ; Irradiation ; Locking ; M stars ; Outgassing ; Planetary rotation ; Planets ; Three dimensional models ; Tidal effects ; Warm climates ; Weathering</subject><ispartof>Astrophysical journal. Letters, 2019-12, Vol.887 (1), p.L3</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-b58bec7d655c52a855ee72c0af4d806092209f00e4b930229047560ecce15eef3</citedby><cites>FETCH-LOGICAL-c380t-b58bec7d655c52a855ee72c0af4d806092209f00e4b930229047560ecce15eef3</cites><orcidid>0000-0001-8724-833X ; 0000-0001-6774-7430 ; 0000-0001-8335-6560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab5957/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab5957$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Checlair, Jade H.</creatorcontrib><creatorcontrib>Salazar, Andrea M.</creatorcontrib><creatorcontrib>Paradise, Adiv</creatorcontrib><creatorcontrib>Menou, Kristen</creatorcontrib><creatorcontrib>Abbot, Dorian S.</creatorcontrib><title>No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Planets orbiting within the habitable zones of M stars are prime targets for future observations, which motivates a greater understanding of how tidal locking can affect planetary habitability. In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm climate states, which has been suggested could occur for rapidly rotating planets in the outer regions of the habitable zone with low CO2 outgassing rates. Here, we use a 3D Global Climate Model that calculates silicate-weathering to show that tidally locked planets with an active carbon cycle will not experience limit cycling between warm and snowball states. Instead, they smoothly settle into "Eyeball" states with a small unglaciated substellar region. The size of this unglaciated region depends on the stellar irradiation, the CO2 outgassing rate, and the continental configuration. Furthermore, we argue that a tidally locked habitable zone planet cannot stay in a snowball state for a geologically significant time. This may be beneficial to the survival of complex life on tidally locked planets orbiting the outer edge of their stars, but might also make it less likely for complex life to arise.</description><subject>Activated carbon</subject><subject>Astrobiology</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Circumstellar habitable zone</subject><subject>Climate models</subject><subject>Cycles</subject><subject>Exoplanet astronomy</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanets</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Habitability</subject><subject>Habitable planets</subject><subject>Irradiation</subject><subject>Locking</subject><subject>M stars</subject><subject>Outgassing</subject><subject>Planetary rotation</subject><subject>Planets</subject><subject>Three dimensional models</subject><subject>Tidal effects</subject><subject>Warm climates</subject><subject>Weathering</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7ePQbEm3WnadOmR1lWVyiu4HrxEtJ0ql1rU5MW2X9va2X1oKcZHt97MzxCTn24DEQYzxiEvieYH8xUxhMe75HJTtrf7cAPyZFzGwAGkS8mRN4Z-lCbj0xVFZ1vdYWOqpa2L0hXXYuWLvJnpKb4UpYqK1uVVUifTI20MPaXtC7zPmNLU6NfMaf3laqxdcfkoFCVw5PvOSWP14v1fOmlq5vb-VXq6UBA62VcZKjjPOJcc6YE54gx06CKMBcQQcIYJAUAhlkSAGMJhDGPALVGv0eLYErOxtzGmvcOXSs3prN1f1KygPdsyAB6CkZKW-OcxUI2tnxTdit9kEONcuhJDp3Jscbecj5aStP8ZKpmU0khYunLNJBNPjxw8Qf3b-wnbPN-fg</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Checlair, Jade H.</creator><creator>Salazar, Andrea M.</creator><creator>Paradise, Adiv</creator><creator>Menou, Kristen</creator><creator>Abbot, Dorian S.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8724-833X</orcidid><orcidid>https://orcid.org/0000-0001-6774-7430</orcidid><orcidid>https://orcid.org/0000-0001-8335-6560</orcidid></search><sort><creationdate>20191210</creationdate><title>No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets</title><author>Checlair, Jade H. ; Salazar, Andrea M. ; Paradise, Adiv ; Menou, Kristen ; Abbot, Dorian S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-b58bec7d655c52a855ee72c0af4d806092209f00e4b930229047560ecce15eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activated carbon</topic><topic>Astrobiology</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Circumstellar habitable zone</topic><topic>Climate models</topic><topic>Cycles</topic><topic>Exoplanet astronomy</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanets</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Habitability</topic><topic>Habitable planets</topic><topic>Irradiation</topic><topic>Locking</topic><topic>M stars</topic><topic>Outgassing</topic><topic>Planetary rotation</topic><topic>Planets</topic><topic>Three dimensional models</topic><topic>Tidal effects</topic><topic>Warm climates</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Checlair, Jade H.</creatorcontrib><creatorcontrib>Salazar, Andrea M.</creatorcontrib><creatorcontrib>Paradise, Adiv</creatorcontrib><creatorcontrib>Menou, Kristen</creatorcontrib><creatorcontrib>Abbot, Dorian S.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Checlair, Jade H.</au><au>Salazar, Andrea M.</au><au>Paradise, Adiv</au><au>Menou, Kristen</au><au>Abbot, Dorian S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>887</volume><issue>1</issue><spage>L3</spage><pages>L3-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Planets orbiting within the habitable zones of M stars are prime targets for future observations, which motivates a greater understanding of how tidal locking can affect planetary habitability. In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm climate states, which has been suggested could occur for rapidly rotating planets in the outer regions of the habitable zone with low CO2 outgassing rates. Here, we use a 3D Global Climate Model that calculates silicate-weathering to show that tidally locked planets with an active carbon cycle will not experience limit cycling between warm and snowball states. Instead, they smoothly settle into "Eyeball" states with a small unglaciated substellar region. The size of this unglaciated region depends on the stellar irradiation, the CO2 outgassing rate, and the continental configuration. Furthermore, we argue that a tidally locked habitable zone planet cannot stay in a snowball state for a geologically significant time. This may be beneficial to the survival of complex life on tidally locked planets orbiting the outer edge of their stars, but might also make it less likely for complex life to arise.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ab5957</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8724-833X</orcidid><orcidid>https://orcid.org/0000-0001-6774-7430</orcidid><orcidid>https://orcid.org/0000-0001-8335-6560</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2019-12, Vol.887 (1), p.L3
issn 2041-8205
2041-8213
language eng
recordid cdi_proquest_journals_2357564200
source IOP Publishing Free Content
subjects Activated carbon
Astrobiology
Carbon cycle
Carbon dioxide
Circumstellar habitable zone
Climate models
Cycles
Exoplanet astronomy
Exoplanet atmospheres
Exoplanets
Global climate
Global climate models
Habitability
Habitable planets
Irradiation
Locking
M stars
Outgassing
Planetary rotation
Planets
Three dimensional models
Tidal effects
Warm climates
Weathering
title No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No%20Snowball%20Cycles%20at%20the%20Outer%20Edge%20of%20the%20Habitable%20Zone%20for%20Habitable%20Tidally%20Locked%20Planets&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Checlair,%20Jade%20H.&rft.date=2019-12-10&rft.volume=887&rft.issue=1&rft.spage=L3&rft.pages=L3-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ab5957&rft_dat=%3Cproquest_O3W%3E2357564200%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357564200&rft_id=info:pmid/&rfr_iscdi=true