Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations

This survey presents a generalization of the notion of a toric structure on a compact symplectic manifold: the notion of a pseudotoric structure. The language of these new structures appears to be a convenient and natural tool for describing many non-standard Lagrangian submanifolds and cycles (Chek...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematical surveys 2017-06, Vol.72 (3), p.513-546
1. Verfasser: Tyurin, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This survey presents a generalization of the notion of a toric structure on a compact symplectic manifold: the notion of a pseudotoric structure. The language of these new structures appears to be a convenient and natural tool for describing many non-standard Lagrangian submanifolds and cycles (Chekanov's exotic tori, Mironov's cycles in certain particular cases, and others) as well as for constructing Lagrangian fibrations (for example, special fibrations in the sense of Auroux on Fano varieties). Known properties of pseudotoric structures and constructions based on these properties are discussed, as well as open problems whose solution may be of importance in symplectic geometry and mathematical physics. Bibliography: 28 titles.
ISSN:0036-0279
1468-4829
DOI:10.1070/RM9764