Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers
Organic single crystals with long‐range molecular order ensure enhanced carrier mobility and stability as well as emission outcoupling, which makes them attractive as gain medium for electrically pumped organic lasers. Unfortunately, effects of excitonic coupling introduce losses degrading optical p...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2020-02, Vol.8 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 8 |
creator | Baronas, Paulius Kreiza, Gediminas Mamada, Masashi Maedera, Satoshi Adomėnas, Povilas Adomėnienė, Ona Kazlauskas, Karolis Adachi, Chihaya Juršėnas, Saulius |
description | Organic single crystals with long‐range molecular order ensure enhanced carrier mobility and stability as well as emission outcoupling, which makes them attractive as gain medium for electrically pumped organic lasers. Unfortunately, effects of excitonic coupling introduce losses degrading optical performance in crystals, hence higher lasing thresholds are observed compared to amorphous films. Here, crystal doping strategy is investigated as a method to avoid pronounced reabsorption and annihilation losses associated with J‐type excitonic coupling, while taking advantage of enhanced exciton transport for efficient energy transfer. Bifluorene‐based derivatives linked with acetylene and ethylene rigid bridges are suitable as host and dopant system forming high‐quality crystals doped at various concentrations (0.5–11.0%). Enhanced exciton transport in host crystal mediates picosecond host–dopant energy transfer enabling 100% transfer efficiency at lower doping concentrations compared to amorphous films. Amplified spontaneous emission threshold of 1.9 µJ cm−2 in 3.5% doped crystal is enabled by minimized exciton annihilation and emission reabsorption losses at optimal doping concentration.
Enhanced exciton transfer in doped crystals is proposed as a mechanism to reduce losses in gain materials. Incorporation of highly emissive dopants into crystals with J‐type excitonic coupling allows to suppress reabsorption and exciton annihilation losses by utilizing long‐range exciton transport. Doped bifluorene crystals show low amplified spontaneous emission threshold of 1.9 µJ cm−2 for organic laser applications. |
doi_str_mv | 10.1002/adom.201901670 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357522502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357522502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4230-f7be6e8233d93b711a5231da93742f97899b18bb08c068044375e5d6f3a5a5803</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EElXpymyJOeVsx3HMVtryIRUVibKwWE5il1SpE-xWKP89roqAjenudL937_QQuiQwJgD0WlftdkyBSCCZgBM0oETyhIAgp3_6czQKYQMAcWAyFQP0Nnfv2pWmwnNn_LrHK69dsMbj2uFZ28XFbW2bfeuNM_ilduvG4Knvw0434QY_-zZ0ptwFbFuPl36tXV3ihQ7Ghwt0ZiNkRt91iF7v5qvpQ7JY3j9OJ4ukTCmDxIrCZCanjFWSFYIQzSkjlZZMpNRKkUtZkLwoIC8hyyFNmeCGV5llmmueAxuiq-PdzrcfexN2atPuvYuWijIuOKUcaKTGR6qMLwdvrOp8vdW-VwTUIUJ1iFD9RBgF8ij4rBvT_0OryWz59Kv9AnTVc7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357522502</pqid></control><display><type>article</type><title>Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers</title><source>Wiley Online Library All Journals</source><creator>Baronas, Paulius ; Kreiza, Gediminas ; Mamada, Masashi ; Maedera, Satoshi ; Adomėnas, Povilas ; Adomėnienė, Ona ; Kazlauskas, Karolis ; Adachi, Chihaya ; Juršėnas, Saulius</creator><creatorcontrib>Baronas, Paulius ; Kreiza, Gediminas ; Mamada, Masashi ; Maedera, Satoshi ; Adomėnas, Povilas ; Adomėnienė, Ona ; Kazlauskas, Karolis ; Adachi, Chihaya ; Juršėnas, Saulius</creatorcontrib><description>Organic single crystals with long‐range molecular order ensure enhanced carrier mobility and stability as well as emission outcoupling, which makes them attractive as gain medium for electrically pumped organic lasers. Unfortunately, effects of excitonic coupling introduce losses degrading optical performance in crystals, hence higher lasing thresholds are observed compared to amorphous films. Here, crystal doping strategy is investigated as a method to avoid pronounced reabsorption and annihilation losses associated with J‐type excitonic coupling, while taking advantage of enhanced exciton transport for efficient energy transfer. Bifluorene‐based derivatives linked with acetylene and ethylene rigid bridges are suitable as host and dopant system forming high‐quality crystals doped at various concentrations (0.5–11.0%). Enhanced exciton transport in host crystal mediates picosecond host–dopant energy transfer enabling 100% transfer efficiency at lower doping concentrations compared to amorphous films. Amplified spontaneous emission threshold of 1.9 µJ cm−2 in 3.5% doped crystal is enabled by minimized exciton annihilation and emission reabsorption losses at optimal doping concentration.
Enhanced exciton transfer in doped crystals is proposed as a mechanism to reduce losses in gain materials. Incorporation of highly emissive dopants into crystals with J‐type excitonic coupling allows to suppress reabsorption and exciton annihilation losses by utilizing long‐range exciton transport. Doped bifluorene crystals show low amplified spontaneous emission threshold of 1.9 µJ cm−2 for organic laser applications.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201901670</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acetylene ; amplified spontaneous emission ; Carrier mobility ; Coupling (molecular) ; Dopants ; Doped crystals ; Doping ; Energy transfer ; Excitons ; Förster resonant energy transfer ; long‐range energy transport ; Materials science ; Optics ; organic laser gain materials ; Organic lasers ; organic single crystals ; Performance degradation ; Single crystals ; Spontaneous emission ; Transport</subject><ispartof>Advanced optical materials, 2020-02, Vol.8 (4), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4230-f7be6e8233d93b711a5231da93742f97899b18bb08c068044375e5d6f3a5a5803</citedby><cites>FETCH-LOGICAL-c4230-f7be6e8233d93b711a5231da93742f97899b18bb08c068044375e5d6f3a5a5803</cites><orcidid>0000-0002-4141-1485 ; 0000-0001-6117-9604 ; 0000-0003-0555-2894 ; 0000-0001-7900-0465 ; 0000-0002-6992-1620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201901670$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201901670$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Baronas, Paulius</creatorcontrib><creatorcontrib>Kreiza, Gediminas</creatorcontrib><creatorcontrib>Mamada, Masashi</creatorcontrib><creatorcontrib>Maedera, Satoshi</creatorcontrib><creatorcontrib>Adomėnas, Povilas</creatorcontrib><creatorcontrib>Adomėnienė, Ona</creatorcontrib><creatorcontrib>Kazlauskas, Karolis</creatorcontrib><creatorcontrib>Adachi, Chihaya</creatorcontrib><creatorcontrib>Juršėnas, Saulius</creatorcontrib><title>Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers</title><title>Advanced optical materials</title><description>Organic single crystals with long‐range molecular order ensure enhanced carrier mobility and stability as well as emission outcoupling, which makes them attractive as gain medium for electrically pumped organic lasers. Unfortunately, effects of excitonic coupling introduce losses degrading optical performance in crystals, hence higher lasing thresholds are observed compared to amorphous films. Here, crystal doping strategy is investigated as a method to avoid pronounced reabsorption and annihilation losses associated with J‐type excitonic coupling, while taking advantage of enhanced exciton transport for efficient energy transfer. Bifluorene‐based derivatives linked with acetylene and ethylene rigid bridges are suitable as host and dopant system forming high‐quality crystals doped at various concentrations (0.5–11.0%). Enhanced exciton transport in host crystal mediates picosecond host–dopant energy transfer enabling 100% transfer efficiency at lower doping concentrations compared to amorphous films. Amplified spontaneous emission threshold of 1.9 µJ cm−2 in 3.5% doped crystal is enabled by minimized exciton annihilation and emission reabsorption losses at optimal doping concentration.
Enhanced exciton transfer in doped crystals is proposed as a mechanism to reduce losses in gain materials. Incorporation of highly emissive dopants into crystals with J‐type excitonic coupling allows to suppress reabsorption and exciton annihilation losses by utilizing long‐range exciton transport. Doped bifluorene crystals show low amplified spontaneous emission threshold of 1.9 µJ cm−2 for organic laser applications.</description><subject>Acetylene</subject><subject>amplified spontaneous emission</subject><subject>Carrier mobility</subject><subject>Coupling (molecular)</subject><subject>Dopants</subject><subject>Doped crystals</subject><subject>Doping</subject><subject>Energy transfer</subject><subject>Excitons</subject><subject>Förster resonant energy transfer</subject><subject>long‐range energy transport</subject><subject>Materials science</subject><subject>Optics</subject><subject>organic laser gain materials</subject><subject>Organic lasers</subject><subject>organic single crystals</subject><subject>Performance degradation</subject><subject>Single crystals</subject><subject>Spontaneous emission</subject><subject>Transport</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAQxS0EElXpymyJOeVsx3HMVtryIRUVibKwWE5il1SpE-xWKP89roqAjenudL937_QQuiQwJgD0WlftdkyBSCCZgBM0oETyhIAgp3_6czQKYQMAcWAyFQP0Nnfv2pWmwnNn_LrHK69dsMbj2uFZ28XFbW2bfeuNM_ilduvG4Knvw0434QY_-zZ0ptwFbFuPl36tXV3ihQ7Ghwt0ZiNkRt91iF7v5qvpQ7JY3j9OJ4ukTCmDxIrCZCanjFWSFYIQzSkjlZZMpNRKkUtZkLwoIC8hyyFNmeCGV5llmmueAxuiq-PdzrcfexN2atPuvYuWijIuOKUcaKTGR6qMLwdvrOp8vdW-VwTUIUJ1iFD9RBgF8ij4rBvT_0OryWz59Kv9AnTVc7E</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Baronas, Paulius</creator><creator>Kreiza, Gediminas</creator><creator>Mamada, Masashi</creator><creator>Maedera, Satoshi</creator><creator>Adomėnas, Povilas</creator><creator>Adomėnienė, Ona</creator><creator>Kazlauskas, Karolis</creator><creator>Adachi, Chihaya</creator><creator>Juršėnas, Saulius</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4141-1485</orcidid><orcidid>https://orcid.org/0000-0001-6117-9604</orcidid><orcidid>https://orcid.org/0000-0003-0555-2894</orcidid><orcidid>https://orcid.org/0000-0001-7900-0465</orcidid><orcidid>https://orcid.org/0000-0002-6992-1620</orcidid></search><sort><creationdate>20200201</creationdate><title>Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers</title><author>Baronas, Paulius ; Kreiza, Gediminas ; Mamada, Masashi ; Maedera, Satoshi ; Adomėnas, Povilas ; Adomėnienė, Ona ; Kazlauskas, Karolis ; Adachi, Chihaya ; Juršėnas, Saulius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4230-f7be6e8233d93b711a5231da93742f97899b18bb08c068044375e5d6f3a5a5803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylene</topic><topic>amplified spontaneous emission</topic><topic>Carrier mobility</topic><topic>Coupling (molecular)</topic><topic>Dopants</topic><topic>Doped crystals</topic><topic>Doping</topic><topic>Energy transfer</topic><topic>Excitons</topic><topic>Förster resonant energy transfer</topic><topic>long‐range energy transport</topic><topic>Materials science</topic><topic>Optics</topic><topic>organic laser gain materials</topic><topic>Organic lasers</topic><topic>organic single crystals</topic><topic>Performance degradation</topic><topic>Single crystals</topic><topic>Spontaneous emission</topic><topic>Transport</topic><toplevel>online_resources</toplevel><creatorcontrib>Baronas, Paulius</creatorcontrib><creatorcontrib>Kreiza, Gediminas</creatorcontrib><creatorcontrib>Mamada, Masashi</creatorcontrib><creatorcontrib>Maedera, Satoshi</creatorcontrib><creatorcontrib>Adomėnas, Povilas</creatorcontrib><creatorcontrib>Adomėnienė, Ona</creatorcontrib><creatorcontrib>Kazlauskas, Karolis</creatorcontrib><creatorcontrib>Adachi, Chihaya</creatorcontrib><creatorcontrib>Juršėnas, Saulius</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baronas, Paulius</au><au>Kreiza, Gediminas</au><au>Mamada, Masashi</au><au>Maedera, Satoshi</au><au>Adomėnas, Povilas</au><au>Adomėnienė, Ona</au><au>Kazlauskas, Karolis</au><au>Adachi, Chihaya</au><au>Juršėnas, Saulius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers</atitle><jtitle>Advanced optical materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>8</volume><issue>4</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Organic single crystals with long‐range molecular order ensure enhanced carrier mobility and stability as well as emission outcoupling, which makes them attractive as gain medium for electrically pumped organic lasers. Unfortunately, effects of excitonic coupling introduce losses degrading optical performance in crystals, hence higher lasing thresholds are observed compared to amorphous films. Here, crystal doping strategy is investigated as a method to avoid pronounced reabsorption and annihilation losses associated with J‐type excitonic coupling, while taking advantage of enhanced exciton transport for efficient energy transfer. Bifluorene‐based derivatives linked with acetylene and ethylene rigid bridges are suitable as host and dopant system forming high‐quality crystals doped at various concentrations (0.5–11.0%). Enhanced exciton transport in host crystal mediates picosecond host–dopant energy transfer enabling 100% transfer efficiency at lower doping concentrations compared to amorphous films. Amplified spontaneous emission threshold of 1.9 µJ cm−2 in 3.5% doped crystal is enabled by minimized exciton annihilation and emission reabsorption losses at optimal doping concentration.
Enhanced exciton transfer in doped crystals is proposed as a mechanism to reduce losses in gain materials. Incorporation of highly emissive dopants into crystals with J‐type excitonic coupling allows to suppress reabsorption and exciton annihilation losses by utilizing long‐range exciton transport. Doped bifluorene crystals show low amplified spontaneous emission threshold of 1.9 µJ cm−2 for organic laser applications.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201901670</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4141-1485</orcidid><orcidid>https://orcid.org/0000-0001-6117-9604</orcidid><orcidid>https://orcid.org/0000-0003-0555-2894</orcidid><orcidid>https://orcid.org/0000-0001-7900-0465</orcidid><orcidid>https://orcid.org/0000-0002-6992-1620</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2020-02, Vol.8 (4), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2357522502 |
source | Wiley Online Library All Journals |
subjects | Acetylene amplified spontaneous emission Carrier mobility Coupling (molecular) Dopants Doped crystals Doping Energy transfer Excitons Förster resonant energy transfer long‐range energy transport Materials science Optics organic laser gain materials Organic lasers organic single crystals Performance degradation Single crystals Spontaneous emission Transport |
title | Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Energy%20Transfer%20in%20Doped%20Bifluorene%20Single%20Crystals:%20Prospects%20for%20Organic%20Lasers&rft.jtitle=Advanced%20optical%20materials&rft.au=Baronas,%20Paulius&rft.date=2020-02-01&rft.volume=8&rft.issue=4&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201901670&rft_dat=%3Cproquest_cross%3E2357522502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357522502&rft_id=info:pmid/&rfr_iscdi=true |