Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting
Functional materials with tuned nanostructure derived from metal-organic frameworks (MOF) hold great promise in energy storage/conversion and catalysis. Herein, we report a novel strategy to fabricate carbon fiber (CF)-supported cobalt nanocatalysts (Co-NC/CF) by a self-made "microreactor"...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2020-02, Vol.13 (2), p.545-553 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553 |
---|---|
container_issue | 2 |
container_start_page | 545 |
container_title | Energy & environmental science |
container_volume | 13 |
creator | Huang, Huawei Zhou, Si Yu, Chang Huang, Hongling Zhao, Jijun Dai, Liming Qiu, Jieshan |
description | Functional materials with tuned nanostructure derived from metal-organic frameworks (MOF) hold great promise in energy storage/conversion and catalysis. Herein, we report a novel strategy to fabricate carbon fiber (CF)-supported cobalt nanocatalysts (Co-NC/CF) by a self-made "microreactor" consisted of randomly stacked graphene powder with the help of the microwave field. This newly-developed methodology can not only lead to a significantly enhanced yield of MOF-derived Co-NC up to 48.7 wt%, but also dramatically reduce the pyrolysis time (in just 60 s) and energy consumption (only 0.37% of traditional pyrolysis method). The experimental results combined with theoretical calculations revealed that the synthesized Co-NC/CF with optimized surface binding capability for reaction intermediates featured high-efficient catalytic activities for OER and HER owing to the electron transfer from cobalt to the surface carbon layers. The present microwave pyrolysis technique with an ultra-short synthesis cycle, high product yield and excellent energy efficiency, also demonstrated broad applicability for the synthesis of other MOF-derived functional materials.
An ultrafast and energy efficient microwave pyrolysis method was reported to convert MOF to efficient electrocatalysts with high product yields. |
doi_str_mv | 10.1039/c9ee03273h |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2357441220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357441220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-c39a0bc98466599670f8c941cc31a902c6f228349ff894e32daf6d1dd65bfb993</originalsourceid><addsrcrecordid>eNpFkV1LwzAYhYMoOKc33gsB74RqPtq0uZQxnTAQRK9Llo8to2tqkjr6G_zTxtWPmzcvOU8OhxMALjG6xYjyO8m1RpSUdHMEJrgs8qwoETv-3Rknp-AshC1CjKCST8Dni-isgqJVULfar4dMG2Ol1W2EOyu924sPDbvBu2YINkDjPNzY9SYbrG4U7LxTvYzWtdCZg9AMmUgX6dHKmr49aKKButEyeidFFMkojkZ7EbWHoWtsjLZdn4MTI5qgL37OKXh7mL_OFtny-fFpdr_MJMVVTJMLtJK8yhkrOGclMpXkOZZJFhwRyQwhFc25MRXPNSVKGKawUqxYmRXndAquR9-U_r3XIdZb1_uUMtSEFmWeY0JQom5GKpUQgtem7rzdCT_UGNXfZdczPp8fyl4k-GqEfZB_3P9n0C-gtX-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357441220</pqid></control><display><type>article</type><title>Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huang, Huawei ; Zhou, Si ; Yu, Chang ; Huang, Hongling ; Zhao, Jijun ; Dai, Liming ; Qiu, Jieshan</creator><creatorcontrib>Huang, Huawei ; Zhou, Si ; Yu, Chang ; Huang, Hongling ; Zhao, Jijun ; Dai, Liming ; Qiu, Jieshan</creatorcontrib><description>Functional materials with tuned nanostructure derived from metal-organic frameworks (MOF) hold great promise in energy storage/conversion and catalysis. Herein, we report a novel strategy to fabricate carbon fiber (CF)-supported cobalt nanocatalysts (Co-NC/CF) by a self-made "microreactor" consisted of randomly stacked graphene powder with the help of the microwave field. This newly-developed methodology can not only lead to a significantly enhanced yield of MOF-derived Co-NC up to 48.7 wt%, but also dramatically reduce the pyrolysis time (in just 60 s) and energy consumption (only 0.37% of traditional pyrolysis method). The experimental results combined with theoretical calculations revealed that the synthesized Co-NC/CF with optimized surface binding capability for reaction intermediates featured high-efficient catalytic activities for OER and HER owing to the electron transfer from cobalt to the surface carbon layers. The present microwave pyrolysis technique with an ultra-short synthesis cycle, high product yield and excellent energy efficiency, also demonstrated broad applicability for the synthesis of other MOF-derived functional materials.
An ultrafast and energy efficient microwave pyrolysis method was reported to convert MOF to efficient electrocatalysts with high product yields.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c9ee03273h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon fibers ; Catalysis ; Cobalt ; Electrocatalysts ; Electron transfer ; Energy consumption ; Energy conversion efficiency ; Energy efficiency ; Energy storage ; Functional materials ; Graphene ; Intermediates ; Metal-organic frameworks ; Pyrolysis ; Water splitting ; Yield</subject><ispartof>Energy & environmental science, 2020-02, Vol.13 (2), p.545-553</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-c39a0bc98466599670f8c941cc31a902c6f228349ff894e32daf6d1dd65bfb993</citedby><cites>FETCH-LOGICAL-c318t-c39a0bc98466599670f8c941cc31a902c6f228349ff894e32daf6d1dd65bfb993</cites><orcidid>0000-0002-0842-1075 ; 0000-0002-6291-3791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Huang, Huawei</creatorcontrib><creatorcontrib>Zhou, Si</creatorcontrib><creatorcontrib>Yu, Chang</creatorcontrib><creatorcontrib>Huang, Hongling</creatorcontrib><creatorcontrib>Zhao, Jijun</creatorcontrib><creatorcontrib>Dai, Liming</creatorcontrib><creatorcontrib>Qiu, Jieshan</creatorcontrib><title>Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting</title><title>Energy & environmental science</title><description>Functional materials with tuned nanostructure derived from metal-organic frameworks (MOF) hold great promise in energy storage/conversion and catalysis. Herein, we report a novel strategy to fabricate carbon fiber (CF)-supported cobalt nanocatalysts (Co-NC/CF) by a self-made "microreactor" consisted of randomly stacked graphene powder with the help of the microwave field. This newly-developed methodology can not only lead to a significantly enhanced yield of MOF-derived Co-NC up to 48.7 wt%, but also dramatically reduce the pyrolysis time (in just 60 s) and energy consumption (only 0.37% of traditional pyrolysis method). The experimental results combined with theoretical calculations revealed that the synthesized Co-NC/CF with optimized surface binding capability for reaction intermediates featured high-efficient catalytic activities for OER and HER owing to the electron transfer from cobalt to the surface carbon layers. The present microwave pyrolysis technique with an ultra-short synthesis cycle, high product yield and excellent energy efficiency, also demonstrated broad applicability for the synthesis of other MOF-derived functional materials.
An ultrafast and energy efficient microwave pyrolysis method was reported to convert MOF to efficient electrocatalysts with high product yields.</description><subject>Carbon fibers</subject><subject>Catalysis</subject><subject>Cobalt</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Functional materials</subject><subject>Graphene</subject><subject>Intermediates</subject><subject>Metal-organic frameworks</subject><subject>Pyrolysis</subject><subject>Water splitting</subject><subject>Yield</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkV1LwzAYhYMoOKc33gsB74RqPtq0uZQxnTAQRK9Llo8to2tqkjr6G_zTxtWPmzcvOU8OhxMALjG6xYjyO8m1RpSUdHMEJrgs8qwoETv-3Rknp-AshC1CjKCST8Dni-isgqJVULfar4dMG2Ol1W2EOyu924sPDbvBu2YINkDjPNzY9SYbrG4U7LxTvYzWtdCZg9AMmUgX6dHKmr49aKKButEyeidFFMkojkZ7EbWHoWtsjLZdn4MTI5qgL37OKXh7mL_OFtny-fFpdr_MJMVVTJMLtJK8yhkrOGclMpXkOZZJFhwRyQwhFc25MRXPNSVKGKawUqxYmRXndAquR9-U_r3XIdZb1_uUMtSEFmWeY0JQom5GKpUQgtem7rzdCT_UGNXfZdczPp8fyl4k-GqEfZB_3P9n0C-gtX-M</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Huang, Huawei</creator><creator>Zhou, Si</creator><creator>Yu, Chang</creator><creator>Huang, Hongling</creator><creator>Zhao, Jijun</creator><creator>Dai, Liming</creator><creator>Qiu, Jieshan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0842-1075</orcidid><orcidid>https://orcid.org/0000-0002-6291-3791</orcidid></search><sort><creationdate>20200219</creationdate><title>Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting</title><author>Huang, Huawei ; Zhou, Si ; Yu, Chang ; Huang, Hongling ; Zhao, Jijun ; Dai, Liming ; Qiu, Jieshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-c39a0bc98466599670f8c941cc31a902c6f228349ff894e32daf6d1dd65bfb993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon fibers</topic><topic>Catalysis</topic><topic>Cobalt</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Functional materials</topic><topic>Graphene</topic><topic>Intermediates</topic><topic>Metal-organic frameworks</topic><topic>Pyrolysis</topic><topic>Water splitting</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Huawei</creatorcontrib><creatorcontrib>Zhou, Si</creatorcontrib><creatorcontrib>Yu, Chang</creatorcontrib><creatorcontrib>Huang, Hongling</creatorcontrib><creatorcontrib>Zhao, Jijun</creatorcontrib><creatorcontrib>Dai, Liming</creatorcontrib><creatorcontrib>Qiu, Jieshan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Huawei</au><au>Zhou, Si</au><au>Yu, Chang</au><au>Huang, Hongling</au><au>Zhao, Jijun</au><au>Dai, Liming</au><au>Qiu, Jieshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting</atitle><jtitle>Energy & environmental science</jtitle><date>2020-02-19</date><risdate>2020</risdate><volume>13</volume><issue>2</issue><spage>545</spage><epage>553</epage><pages>545-553</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Functional materials with tuned nanostructure derived from metal-organic frameworks (MOF) hold great promise in energy storage/conversion and catalysis. Herein, we report a novel strategy to fabricate carbon fiber (CF)-supported cobalt nanocatalysts (Co-NC/CF) by a self-made "microreactor" consisted of randomly stacked graphene powder with the help of the microwave field. This newly-developed methodology can not only lead to a significantly enhanced yield of MOF-derived Co-NC up to 48.7 wt%, but also dramatically reduce the pyrolysis time (in just 60 s) and energy consumption (only 0.37% of traditional pyrolysis method). The experimental results combined with theoretical calculations revealed that the synthesized Co-NC/CF with optimized surface binding capability for reaction intermediates featured high-efficient catalytic activities for OER and HER owing to the electron transfer from cobalt to the surface carbon layers. The present microwave pyrolysis technique with an ultra-short synthesis cycle, high product yield and excellent energy efficiency, also demonstrated broad applicability for the synthesis of other MOF-derived functional materials.
An ultrafast and energy efficient microwave pyrolysis method was reported to convert MOF to efficient electrocatalysts with high product yields.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ee03273h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0842-1075</orcidid><orcidid>https://orcid.org/0000-0002-6291-3791</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2020-02, Vol.13 (2), p.545-553 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2357441220 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon fibers Catalysis Cobalt Electrocatalysts Electron transfer Energy consumption Energy conversion efficiency Energy efficiency Energy storage Functional materials Graphene Intermediates Metal-organic frameworks Pyrolysis Water splitting Yield |
title | Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20energy-efficient%20microwave%20pyrolysis%20for%20high-yield%20production%20of%20highly-active%20bifunctional%20electrocatalysts%20for%20water%20splitting&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Huang,%20Huawei&rft.date=2020-02-19&rft.volume=13&rft.issue=2&rft.spage=545&rft.epage=553&rft.pages=545-553&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c9ee03273h&rft_dat=%3Cproquest_rsc_p%3E2357441220%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357441220&rft_id=info:pmid/&rfr_iscdi=true |