Statistical approximation of high-dimensional climate models

We propose a general emulation method for constructing low-dimensional approximations of complex dynamic climate models. Our method uses artificially designed uncorrelated CO2 emissions scenarios, which are much better suited for the construction of an emulator than are conventional emissions scenar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2020-01, Vol.214 (1), p.67-80
Hauptverfasser: Miftakhova, Alena, Judd, Kenneth L., Lontzek, Thomas S., Schmedders, Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 67
container_title Journal of econometrics
container_volume 214
creator Miftakhova, Alena
Judd, Kenneth L.
Lontzek, Thomas S.
Schmedders, Karl
description We propose a general emulation method for constructing low-dimensional approximations of complex dynamic climate models. Our method uses artificially designed uncorrelated CO2 emissions scenarios, which are much better suited for the construction of an emulator than are conventional emissions scenarios. We apply our method to the climate model MAGICC to approximate the impact of emissions on global temperature. Comparing the temperature forecasts of MAGICC and our emulator, we show that the average relative out-of-sample forecast errors in the low-dimensional emulation models are below 2%. Our emulator offers an avenue to merge modern macroeconomic models with complex dynamic climate models.
doi_str_mv 10.1016/j.jeconom.2019.05.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357385612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407619301083</els_id><sourcerecordid>2357385612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-886024329a2d7c5ac947ed02800875191d77a41416ff859fe5b142689a8fe70f3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKHguXWSJk0KgsjiP1jwoJ5DTCduSrtZk67otzfL7t3TwJv3hjc_Qi4pVBRoc91XPdqwDmPFgLYViApAHJEZVZKVjWrFMZlBDbzkIJtTcpZSD9nBVT0jN6-TmXyavDVDYTabGH78mJWwLoIrVv5zVXZ-xHXKSnbYYbfFYgwdDumcnDgzJLw4zDl5f7h_WzyVy5fH58XdsrSct1OpVAOM16w1rJNWGNtyiR0wBaCkoC3tpDSccto4p0TrUHxQznJxoxxKcPWcXO3v5npfW0yT7sM25j5Js1rIWomGsuwSe5eNIaWITm9ibht_NQW9A6V7fQCld6A0CJ0x5NztPpc_wm-PUSfrcW2x8xHtpLvg_7nwB_FtczM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357385612</pqid></control><display><type>article</type><title>Statistical approximation of high-dimensional climate models</title><source>Access via ScienceDirect (Elsevier)</source><creator>Miftakhova, Alena ; Judd, Kenneth L. ; Lontzek, Thomas S. ; Schmedders, Karl</creator><creatorcontrib>Miftakhova, Alena ; Judd, Kenneth L. ; Lontzek, Thomas S. ; Schmedders, Karl</creatorcontrib><description>We propose a general emulation method for constructing low-dimensional approximations of complex dynamic climate models. Our method uses artificially designed uncorrelated CO2 emissions scenarios, which are much better suited for the construction of an emulator than are conventional emissions scenarios. We apply our method to the climate model MAGICC to approximate the impact of emissions on global temperature. Comparing the temperature forecasts of MAGICC and our emulator, we show that the average relative out-of-sample forecast errors in the low-dimensional emulation models are below 2%. Our emulator offers an avenue to merge modern macroeconomic models with complex dynamic climate models.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2019.05.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Averages ; Carbon dioxide ; Climate change ; Emissions control ; Emulation ; Forecasting ; Greenhouse gas ; Orthogonal polynomials ; Single equation models</subject><ispartof>Journal of econometrics, 2020-01, Vol.214 (1), p.67-80</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-886024329a2d7c5ac947ed02800875191d77a41416ff859fe5b142689a8fe70f3</citedby><cites>FETCH-LOGICAL-c449t-886024329a2d7c5ac947ed02800875191d77a41416ff859fe5b142689a8fe70f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2019.05.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Miftakhova, Alena</creatorcontrib><creatorcontrib>Judd, Kenneth L.</creatorcontrib><creatorcontrib>Lontzek, Thomas S.</creatorcontrib><creatorcontrib>Schmedders, Karl</creatorcontrib><title>Statistical approximation of high-dimensional climate models</title><title>Journal of econometrics</title><description>We propose a general emulation method for constructing low-dimensional approximations of complex dynamic climate models. Our method uses artificially designed uncorrelated CO2 emissions scenarios, which are much better suited for the construction of an emulator than are conventional emissions scenarios. We apply our method to the climate model MAGICC to approximate the impact of emissions on global temperature. Comparing the temperature forecasts of MAGICC and our emulator, we show that the average relative out-of-sample forecast errors in the low-dimensional emulation models are below 2%. Our emulator offers an avenue to merge modern macroeconomic models with complex dynamic climate models.</description><subject>Approximation</subject><subject>Averages</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>Emissions control</subject><subject>Emulation</subject><subject>Forecasting</subject><subject>Greenhouse gas</subject><subject>Orthogonal polynomials</subject><subject>Single equation models</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKHguXWSJk0KgsjiP1jwoJ5DTCduSrtZk67otzfL7t3TwJv3hjc_Qi4pVBRoc91XPdqwDmPFgLYViApAHJEZVZKVjWrFMZlBDbzkIJtTcpZSD9nBVT0jN6-TmXyavDVDYTabGH78mJWwLoIrVv5zVXZ-xHXKSnbYYbfFYgwdDumcnDgzJLw4zDl5f7h_WzyVy5fH58XdsrSct1OpVAOM16w1rJNWGNtyiR0wBaCkoC3tpDSccto4p0TrUHxQznJxoxxKcPWcXO3v5npfW0yT7sM25j5Js1rIWomGsuwSe5eNIaWITm9ibht_NQW9A6V7fQCld6A0CJ0x5NztPpc_wm-PUSfrcW2x8xHtpLvg_7nwB_FtczM</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Miftakhova, Alena</creator><creator>Judd, Kenneth L.</creator><creator>Lontzek, Thomas S.</creator><creator>Schmedders, Karl</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202001</creationdate><title>Statistical approximation of high-dimensional climate models</title><author>Miftakhova, Alena ; Judd, Kenneth L. ; Lontzek, Thomas S. ; Schmedders, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-886024329a2d7c5ac947ed02800875191d77a41416ff859fe5b142689a8fe70f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Averages</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>Emissions control</topic><topic>Emulation</topic><topic>Forecasting</topic><topic>Greenhouse gas</topic><topic>Orthogonal polynomials</topic><topic>Single equation models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miftakhova, Alena</creatorcontrib><creatorcontrib>Judd, Kenneth L.</creatorcontrib><creatorcontrib>Lontzek, Thomas S.</creatorcontrib><creatorcontrib>Schmedders, Karl</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miftakhova, Alena</au><au>Judd, Kenneth L.</au><au>Lontzek, Thomas S.</au><au>Schmedders, Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical approximation of high-dimensional climate models</atitle><jtitle>Journal of econometrics</jtitle><date>2020-01</date><risdate>2020</risdate><volume>214</volume><issue>1</issue><spage>67</spage><epage>80</epage><pages>67-80</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>We propose a general emulation method for constructing low-dimensional approximations of complex dynamic climate models. Our method uses artificially designed uncorrelated CO2 emissions scenarios, which are much better suited for the construction of an emulator than are conventional emissions scenarios. We apply our method to the climate model MAGICC to approximate the impact of emissions on global temperature. Comparing the temperature forecasts of MAGICC and our emulator, we show that the average relative out-of-sample forecast errors in the low-dimensional emulation models are below 2%. Our emulator offers an avenue to merge modern macroeconomic models with complex dynamic climate models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2019.05.005</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2020-01, Vol.214 (1), p.67-80
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2357385612
source Access via ScienceDirect (Elsevier)
subjects Approximation
Averages
Carbon dioxide
Climate change
Emissions control
Emulation
Forecasting
Greenhouse gas
Orthogonal polynomials
Single equation models
title Statistical approximation of high-dimensional climate models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20approximation%20of%20high-dimensional%20climate%20models&rft.jtitle=Journal%20of%20econometrics&rft.au=Miftakhova,%20Alena&rft.date=2020-01&rft.volume=214&rft.issue=1&rft.spage=67&rft.epage=80&rft.pages=67-80&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2019.05.005&rft_dat=%3Cproquest_cross%3E2357385612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357385612&rft_id=info:pmid/&rft_els_id=S0304407619301083&rfr_iscdi=true