Thermal Transport in 3D Nanostructures
This work summarizes the recent progress on the thermal transport properties of 3D nanostructures, with an emphasis on experimental results. Depending on the applications, different 3D nanostructures can be prepared or designed to either achieve a low thermal conductivity for thermal insulation or t...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-02, Vol.30 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Zhan, Haifei Nie, Yihan Chen, Yongnan Bell, John M. Gu, Yuantong |
description | This work summarizes the recent progress on the thermal transport properties of 3D nanostructures, with an emphasis on experimental results. Depending on the applications, different 3D nanostructures can be prepared or designed to either achieve a low thermal conductivity for thermal insulation or thermoelectric devices or a high thermal conductivity for thermal interface materials used in the continuing miniaturization of electronics. A broad range of 3D nanostructures are discussed, ranging from colloidal crystals/assemblies, array structures, holey structures, hierarchical structures, to 3D nanostructured fillers for metal matrix composites and polymer composites. Different factors that impact the thermal conductivity of these 3D structures are compared and analyzed. This work provides an overall understanding of the thermal transport properties of various 3D nanostructures, which will shed light on the thermal management at nanoscale.
Diverse 3D nanostructures are fabricated to meet specific thermal management purposes, including nanoarchitectures (such as colloidal assemblies and carbon nanotube arrays) and nanocomposites from polymer matrix or metal matrix. It is shown that the use of nanostructuring of materials is an effective strategy to modify the thermal conductivity of materials. |
doi_str_mv | 10.1002/adfm.201903841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2357336325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357336325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4231-de4cbb293509ba647efed29e01b2ccf70a346de1875d3be6190d8c032a56278c3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMkdCYks4-xw7GauWAlKBJUhsluM4IlU-ip0I9d83VVAZme6G53nv9BJySyGiAOxBF2UTMaApYMLpGZlRQUWIwJLz004_L8mV91sAKiXyGbnPvqxrdB1kTrd-17k-qNoAV8Gbbjvfu8H0g7P-mlyUuvb25nfOycf6MVs-h5v3p5flYhMazpCGheUmz1mKMaS5Flza0hYstUBzZkwpQSMXhaWJjAvMrRh_LRIDyHQsmEwMzsndlLtz3fdgfa-23eDa8aRiGEtEgSweqWiijOu8d7ZUO1c12u0VBXXsQh27UKcuRiGdhJ-qtvt_aLVYrV__3AOtPmFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357336325</pqid></control><display><type>article</type><title>Thermal Transport in 3D Nanostructures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhan, Haifei ; Nie, Yihan ; Chen, Yongnan ; Bell, John M. ; Gu, Yuantong</creator><creatorcontrib>Zhan, Haifei ; Nie, Yihan ; Chen, Yongnan ; Bell, John M. ; Gu, Yuantong</creatorcontrib><description>This work summarizes the recent progress on the thermal transport properties of 3D nanostructures, with an emphasis on experimental results. Depending on the applications, different 3D nanostructures can be prepared or designed to either achieve a low thermal conductivity for thermal insulation or thermoelectric devices or a high thermal conductivity for thermal interface materials used in the continuing miniaturization of electronics. A broad range of 3D nanostructures are discussed, ranging from colloidal crystals/assemblies, array structures, holey structures, hierarchical structures, to 3D nanostructured fillers for metal matrix composites and polymer composites. Different factors that impact the thermal conductivity of these 3D structures are compared and analyzed. This work provides an overall understanding of the thermal transport properties of various 3D nanostructures, which will shed light on the thermal management at nanoscale.
Diverse 3D nanostructures are fabricated to meet specific thermal management purposes, including nanoarchitectures (such as colloidal assemblies and carbon nanotube arrays) and nanocomposites from polymer matrix or metal matrix. It is shown that the use of nanostructuring of materials is an effective strategy to modify the thermal conductivity of materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201903841</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>carbon nanotube ; Crystal structure ; Fillers ; Heat conductivity ; Heat transfer ; Materials science ; Metal matrix composites ; Miniaturization ; nanocomposite ; Nanostructure ; nanostructures ; Polymer matrix composites ; Structural hierarchy ; Thermal conductivity ; Thermal insulation ; Thermal management ; Transport properties</subject><ispartof>Advanced functional materials, 2020-02, Vol.30 (8), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4231-de4cbb293509ba647efed29e01b2ccf70a346de1875d3be6190d8c032a56278c3</citedby><cites>FETCH-LOGICAL-c4231-de4cbb293509ba647efed29e01b2ccf70a346de1875d3be6190d8c032a56278c3</cites><orcidid>0000-0002-0008-545X ; 0000-0002-2770-5014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201903841$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201903841$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhan, Haifei</creatorcontrib><creatorcontrib>Nie, Yihan</creatorcontrib><creatorcontrib>Chen, Yongnan</creatorcontrib><creatorcontrib>Bell, John M.</creatorcontrib><creatorcontrib>Gu, Yuantong</creatorcontrib><title>Thermal Transport in 3D Nanostructures</title><title>Advanced functional materials</title><description>This work summarizes the recent progress on the thermal transport properties of 3D nanostructures, with an emphasis on experimental results. Depending on the applications, different 3D nanostructures can be prepared or designed to either achieve a low thermal conductivity for thermal insulation or thermoelectric devices or a high thermal conductivity for thermal interface materials used in the continuing miniaturization of electronics. A broad range of 3D nanostructures are discussed, ranging from colloidal crystals/assemblies, array structures, holey structures, hierarchical structures, to 3D nanostructured fillers for metal matrix composites and polymer composites. Different factors that impact the thermal conductivity of these 3D structures are compared and analyzed. This work provides an overall understanding of the thermal transport properties of various 3D nanostructures, which will shed light on the thermal management at nanoscale.
Diverse 3D nanostructures are fabricated to meet specific thermal management purposes, including nanoarchitectures (such as colloidal assemblies and carbon nanotube arrays) and nanocomposites from polymer matrix or metal matrix. It is shown that the use of nanostructuring of materials is an effective strategy to modify the thermal conductivity of materials.</description><subject>carbon nanotube</subject><subject>Crystal structure</subject><subject>Fillers</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Materials science</subject><subject>Metal matrix composites</subject><subject>Miniaturization</subject><subject>nanocomposite</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>Polymer matrix composites</subject><subject>Structural hierarchy</subject><subject>Thermal conductivity</subject><subject>Thermal insulation</subject><subject>Thermal management</subject><subject>Transport properties</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMkdCYks4-xw7GauWAlKBJUhsluM4IlU-ip0I9d83VVAZme6G53nv9BJySyGiAOxBF2UTMaApYMLpGZlRQUWIwJLz004_L8mV91sAKiXyGbnPvqxrdB1kTrd-17k-qNoAV8Gbbjvfu8H0g7P-mlyUuvb25nfOycf6MVs-h5v3p5flYhMazpCGheUmz1mKMaS5Flza0hYstUBzZkwpQSMXhaWJjAvMrRh_LRIDyHQsmEwMzsndlLtz3fdgfa-23eDa8aRiGEtEgSweqWiijOu8d7ZUO1c12u0VBXXsQh27UKcuRiGdhJ-qtvt_aLVYrV__3AOtPmFk</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Zhan, Haifei</creator><creator>Nie, Yihan</creator><creator>Chen, Yongnan</creator><creator>Bell, John M.</creator><creator>Gu, Yuantong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0008-545X</orcidid><orcidid>https://orcid.org/0000-0002-2770-5014</orcidid></search><sort><creationdate>20200201</creationdate><title>Thermal Transport in 3D Nanostructures</title><author>Zhan, Haifei ; Nie, Yihan ; Chen, Yongnan ; Bell, John M. ; Gu, Yuantong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4231-de4cbb293509ba647efed29e01b2ccf70a346de1875d3be6190d8c032a56278c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>carbon nanotube</topic><topic>Crystal structure</topic><topic>Fillers</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Materials science</topic><topic>Metal matrix composites</topic><topic>Miniaturization</topic><topic>nanocomposite</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>Polymer matrix composites</topic><topic>Structural hierarchy</topic><topic>Thermal conductivity</topic><topic>Thermal insulation</topic><topic>Thermal management</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Haifei</creatorcontrib><creatorcontrib>Nie, Yihan</creatorcontrib><creatorcontrib>Chen, Yongnan</creatorcontrib><creatorcontrib>Bell, John M.</creatorcontrib><creatorcontrib>Gu, Yuantong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Haifei</au><au>Nie, Yihan</au><au>Chen, Yongnan</au><au>Bell, John M.</au><au>Gu, Yuantong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Transport in 3D Nanostructures</atitle><jtitle>Advanced functional materials</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>30</volume><issue>8</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>This work summarizes the recent progress on the thermal transport properties of 3D nanostructures, with an emphasis on experimental results. Depending on the applications, different 3D nanostructures can be prepared or designed to either achieve a low thermal conductivity for thermal insulation or thermoelectric devices or a high thermal conductivity for thermal interface materials used in the continuing miniaturization of electronics. A broad range of 3D nanostructures are discussed, ranging from colloidal crystals/assemblies, array structures, holey structures, hierarchical structures, to 3D nanostructured fillers for metal matrix composites and polymer composites. Different factors that impact the thermal conductivity of these 3D structures are compared and analyzed. This work provides an overall understanding of the thermal transport properties of various 3D nanostructures, which will shed light on the thermal management at nanoscale.
Diverse 3D nanostructures are fabricated to meet specific thermal management purposes, including nanoarchitectures (such as colloidal assemblies and carbon nanotube arrays) and nanocomposites from polymer matrix or metal matrix. It is shown that the use of nanostructuring of materials is an effective strategy to modify the thermal conductivity of materials.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201903841</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-0008-545X</orcidid><orcidid>https://orcid.org/0000-0002-2770-5014</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-02, Vol.30 (8), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2357336325 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | carbon nanotube Crystal structure Fillers Heat conductivity Heat transfer Materials science Metal matrix composites Miniaturization nanocomposite Nanostructure nanostructures Polymer matrix composites Structural hierarchy Thermal conductivity Thermal insulation Thermal management Transport properties |
title | Thermal Transport in 3D Nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Transport%20in%203D%20Nanostructures&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhan,%20Haifei&rft.date=2020-02-01&rft.volume=30&rft.issue=8&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201903841&rft_dat=%3Cproquest_cross%3E2357336325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357336325&rft_id=info:pmid/&rfr_iscdi=true |