Automatic lesion segmentation and Pathological Myopia classification in fundus images
In this paper we present algorithms to diagnosis Pathological Myopia (PM) and detection of retinal structures and lesions such asOptic Disc (OD), Fovea, Atrophy and Detachment. All these tasks were performed in fundus imaging from PM patients and they are requirements to participate in the Pathologi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cefas Rodrigues Freire Julio Cesar da Costa Moura Daniele Montenegro da Silva Barros Ricardo Alexsandro de Medeiros Valentim |
description | In this paper we present algorithms to diagnosis Pathological Myopia (PM) and detection of retinal structures and lesions such asOptic Disc (OD), Fovea, Atrophy and Detachment. All these tasks were performed in fundus imaging from PM patients and they are requirements to participate in the Pathologic Myopia Challenge (PALM). The challenge was organized as a half day Challenge, a Satellite Event of The IEEE International Symposium on Biomedical Imaging in Venice Italy.Our method applies different Deep Learning techniques for each task. Transfer learning is applied in all tasks using Xception as the baseline model. Also, some key ideas of YOLO architecture are used in the Optic Disc segmentation algorithm pipeline. We have evaluated our model's performance according the challenge rules in terms of AUC-ROC, F1-Score, Mean Dice Score and Mean Euclidean Distance. For initial activities our method has shown satisfactory results. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2357106799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357106799</sourcerecordid><originalsourceid>FETCH-proquest_journals_23571067993</originalsourceid><addsrcrecordid>eNqNirEKwjAURYMgWLT_EHAupIlt7SiiuAgOOpdHmtaUNKl9yeDfG8QPcLrcc86CJFyIPNvvOF-RFHFgjPGy4kUhEvI4BO9G8FpSo1A7S1H1o7I-onjAtvQG_umM67UEQ69vN2mg0gCi7iL6ZtrSLtg2INUj9Ao3ZNmBQZX-dk2259P9eMmm2b2CQt8MLsw2qoaLospZWdW1-K_6AEE5QcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357106799</pqid></control><display><type>article</type><title>Automatic lesion segmentation and Pathological Myopia classification in fundus images</title><source>Freely Accessible Journals</source><creator>Cefas Rodrigues Freire ; Julio Cesar da Costa Moura ; Daniele Montenegro da Silva Barros ; Ricardo Alexsandro de Medeiros Valentim</creator><creatorcontrib>Cefas Rodrigues Freire ; Julio Cesar da Costa Moura ; Daniele Montenegro da Silva Barros ; Ricardo Alexsandro de Medeiros Valentim</creatorcontrib><description>In this paper we present algorithms to diagnosis Pathological Myopia (PM) and detection of retinal structures and lesions such asOptic Disc (OD), Fovea, Atrophy and Detachment. All these tasks were performed in fundus imaging from PM patients and they are requirements to participate in the Pathologic Myopia Challenge (PALM). The challenge was organized as a half day Challenge, a Satellite Event of The IEEE International Symposium on Biomedical Imaging in Venice Italy.Our method applies different Deep Learning techniques for each task. Transfer learning is applied in all tasks using Xception as the baseline model. Also, some key ideas of YOLO architecture are used in the Optic Disc segmentation algorithm pipeline. We have evaluated our model's performance according the challenge rules in terms of AUC-ROC, F1-Score, Mean Dice Score and Mean Euclidean Distance. For initial activities our method has shown satisfactory results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Atrophy ; Euclidean geometry ; Fovea ; Image classification ; Image segmentation ; Machine learning ; Medical imaging ; Myopia</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Cefas Rodrigues Freire</creatorcontrib><creatorcontrib>Julio Cesar da Costa Moura</creatorcontrib><creatorcontrib>Daniele Montenegro da Silva Barros</creatorcontrib><creatorcontrib>Ricardo Alexsandro de Medeiros Valentim</creatorcontrib><title>Automatic lesion segmentation and Pathological Myopia classification in fundus images</title><title>arXiv.org</title><description>In this paper we present algorithms to diagnosis Pathological Myopia (PM) and detection of retinal structures and lesions such asOptic Disc (OD), Fovea, Atrophy and Detachment. All these tasks were performed in fundus imaging from PM patients and they are requirements to participate in the Pathologic Myopia Challenge (PALM). The challenge was organized as a half day Challenge, a Satellite Event of The IEEE International Symposium on Biomedical Imaging in Venice Italy.Our method applies different Deep Learning techniques for each task. Transfer learning is applied in all tasks using Xception as the baseline model. Also, some key ideas of YOLO architecture are used in the Optic Disc segmentation algorithm pipeline. We have evaluated our model's performance according the challenge rules in terms of AUC-ROC, F1-Score, Mean Dice Score and Mean Euclidean Distance. For initial activities our method has shown satisfactory results.</description><subject>Algorithms</subject><subject>Atrophy</subject><subject>Euclidean geometry</subject><subject>Fovea</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Myopia</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAURYMgWLT_EHAupIlt7SiiuAgOOpdHmtaUNKl9yeDfG8QPcLrcc86CJFyIPNvvOF-RFHFgjPGy4kUhEvI4BO9G8FpSo1A7S1H1o7I-onjAtvQG_umM67UEQ69vN2mg0gCi7iL6ZtrSLtg2INUj9Ao3ZNmBQZX-dk2259P9eMmm2b2CQt8MLsw2qoaLospZWdW1-K_6AEE5QcI</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Cefas Rodrigues Freire</creator><creator>Julio Cesar da Costa Moura</creator><creator>Daniele Montenegro da Silva Barros</creator><creator>Ricardo Alexsandro de Medeiros Valentim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200215</creationdate><title>Automatic lesion segmentation and Pathological Myopia classification in fundus images</title><author>Cefas Rodrigues Freire ; Julio Cesar da Costa Moura ; Daniele Montenegro da Silva Barros ; Ricardo Alexsandro de Medeiros Valentim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23571067993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Atrophy</topic><topic>Euclidean geometry</topic><topic>Fovea</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Myopia</topic><toplevel>online_resources</toplevel><creatorcontrib>Cefas Rodrigues Freire</creatorcontrib><creatorcontrib>Julio Cesar da Costa Moura</creatorcontrib><creatorcontrib>Daniele Montenegro da Silva Barros</creatorcontrib><creatorcontrib>Ricardo Alexsandro de Medeiros Valentim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cefas Rodrigues Freire</au><au>Julio Cesar da Costa Moura</au><au>Daniele Montenegro da Silva Barros</au><au>Ricardo Alexsandro de Medeiros Valentim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automatic lesion segmentation and Pathological Myopia classification in fundus images</atitle><jtitle>arXiv.org</jtitle><date>2020-02-15</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper we present algorithms to diagnosis Pathological Myopia (PM) and detection of retinal structures and lesions such asOptic Disc (OD), Fovea, Atrophy and Detachment. All these tasks were performed in fundus imaging from PM patients and they are requirements to participate in the Pathologic Myopia Challenge (PALM). The challenge was organized as a half day Challenge, a Satellite Event of The IEEE International Symposium on Biomedical Imaging in Venice Italy.Our method applies different Deep Learning techniques for each task. Transfer learning is applied in all tasks using Xception as the baseline model. Also, some key ideas of YOLO architecture are used in the Optic Disc segmentation algorithm pipeline. We have evaluated our model's performance according the challenge rules in terms of AUC-ROC, F1-Score, Mean Dice Score and Mean Euclidean Distance. For initial activities our method has shown satisfactory results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2357106799 |
source | Freely Accessible Journals |
subjects | Algorithms Atrophy Euclidean geometry Fovea Image classification Image segmentation Machine learning Medical imaging Myopia |
title | Automatic lesion segmentation and Pathological Myopia classification in fundus images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automatic%20lesion%20segmentation%20and%20Pathological%20Myopia%20classification%20in%20fundus%20images&rft.jtitle=arXiv.org&rft.au=Cefas%20Rodrigues%20Freire&rft.date=2020-02-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2357106799%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357106799&rft_id=info:pmid/&rfr_iscdi=true |